Transcriptome profiling of fetal Klinefelter testis tissue reveals a possible involvement of long non-coding RNAs in gonocyte maturation - DTU Orbit (26/02/2019)

In humans, the most common sex chromosomal disorder is Klinefelter syndrome (KS), caused by the presence of one or more extra X-chromosomes. KS patients display a varying adult phenotype but usually present with azoospermia due to testicular degeneration, which accelerates at puberty. The timing of the germ cell loss and whether it is caused by dysgenetic fetal development of the testes is not known. We investigated 8 fetal KS testes and found a marked reduction in MAGE-A4-positive pre-spermatogonia compared to testes from 15 age-matched controls, indicating a failure of the gonocytes to differentiate into pre-spermatogonia. Transcriptome analysis by RNA-sequencing of formalin-fixed, paraffin-embedded testes originating from 4 fetal KS and 5 age-matched controls revealed 211 differentially expressed transcripts in the fetal KS testis. We found a significant enrichment of upregulated X-chromosomal transcripts and validated the expression of the pseudoautosomal region 1 (PAR1) gene, AKAP17A. Moreover, we found enrichment of long non-coding RNAs in the KS testes (e.g. LINCO1569 and RP11-485F13.1). In conclusion, our data indicates that the testicular phenotype observed among adult men with KS is initiated already in fetal life by failure of the gonocyte differentiation into pre-spermatogonia, which could be due to aberrant expression of long non-coding RNAs.

General information
State: Published
Organisations: Department of Bio and Health Informatics, Copenhagen University Hospital, Aarhus University, University of Copenhagen
Contributors: Winge, S. B., Dalgaard, M. D., Jensen, J. M., Graem, N., Schierup, M. H., Juul, A., Rajpert-De Meyts, E., Almstrup, K.
Number of pages: 10
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Human Molecular Genetics
Volume: 27
Issue number: 3
Article number: ddx411
ISSN (Print): 0964-6906
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.31 SJR 3.555 SNIP 1.226
Web of Science (2017): Impact factor 4.902
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.16 SJR 3.698 SNIP 1.241
Web of Science (2016): Impact factor 5.34
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.96 SJR 4.308 SNIP 1.395
Web of Science (2015): Impact factor 5.985
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.54 SJR 4.568 SNIP 1.492
Web of Science (2014): Impact factor 6.393
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 7.42 SJR 5.048 SNIP 1.577
Web of Science (2013): Impact factor 6.677
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2