Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis - DTU Orbit (15/12/2018)

Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis

We present the results of a mesocosm experiment investigating the production and utilization of autochthonous dissolved organic matter (DOM) by the plankton community under different inorganic nutrient regimes. Fluorescence spectroscopy combined with parallel factor analysis was applied to study the dynamics of autochthonous DOM. Seven independent fluorescent fractions were identified, differing in their spectral characteristics, production rates, and sensitivity to photochemical and microbial degradation processes. Five different humic fractions, a marine protein, and a peptide fluorescence were found. The five humic fractions were produced microbially, with the greatest production occurring under combined Si- and P-limiting conditions. The two proteinaceous fractions were produced during exponential growth of phytoplankton, irrespective of biomass composition. Photodegradation was an important sink for the microbially derived humic material, and the marine protein material was susceptible to both photo-and microbial degradation.

General information
State: Published
Organisations: Danish Centre for Environment and Energy
Contributors: Stedmon, C., Markager, S.
Pages: 1415-1426
Publication date: 2005
Peer-reviewed: Yes

Publication Information
Journal: Limnology and Oceanography
Volume: 50
Issue number: 5
ISSN (Print): 0024-3590
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.81 SJR 1.871 SNIP 1.329
Web of Science (2017): Impact factor 3.595
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.5 SJR 1.806 SNIP 1.253
Web of Science (2016): Impact factor 3.383
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.93 SJR 2.423 SNIP 1.408
Web of Science (2015): Impact factor 3.66
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.73 SJR 2.118 SNIP 1.581
Web of Science (2014): Impact factor 3.794
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.98 SJR 2.244 SNIP 1.564
Web of Science (2013): Impact factor 3.615
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.81 SJR 2.474 SNIP 1.499
Web of Science (2012): Impact factor 3.405
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.59 SJR 2.398 SNIP 1.439
Web of Science (2011): Impact factor 3.416
ISI indexed (2011): ISI indexed yes