Trace elements in co-combustion of solid recovered fuel and coal

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Standard

Trace elements in co-combustion of solid recovered fuel and coal. / Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming; Dam-Johansen, Kim; Jensen, Peter Arendt; Sander, Bo.

In: Fuel Processing Technology, Vol. 105, 2013, p. 212-221.

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Harvard

APA

CBE

MLA

Vancouver

Author

Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming; Dam-Johansen, Kim; Jensen, Peter Arendt; Sander, Bo / Trace elements in co-combustion of solid recovered fuel and coal.

In: Fuel Processing Technology, Vol. 105, 2013, p. 212-221.

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Bibtex

@article{ea0af8360741421f873e4685cc962d6a,
title = "Trace elements in co-combustion of solid recovered fuel and coal",
keywords = "Pulverized coal combustion, Co-combustion, Solid recovered fuel, Trace element",
publisher = "Elsevier BV",
author = "Hao Wu and Peter Glarborg and {Jappe Frandsen}, Flemming and Kim Dam-Johansen and Jensen, {Peter Arendt} and Bo Sander",
year = "2013",
doi = "10.1016/j.fuproc.2011.05.007",
volume = "105",
pages = "212--221",
journal = "Fuel Processing Technology",
issn = "0378-3820",

}

RIS

TY - JOUR

T1 - Trace elements in co-combustion of solid recovered fuel and coal

A1 - Wu,Hao

A1 - Glarborg,Peter

A1 - Jappe Frandsen,Flemming

A1 - Dam-Johansen,Kim

A1 - Jensen,Peter Arendt

A1 - Sander,Bo

AU - Wu,Hao

AU - Glarborg,Peter

AU - Jappe Frandsen,Flemming

AU - Dam-Johansen,Kim

AU - Jensen,Peter Arendt

AU - Sander,Bo

PB - Elsevier BV

PY - 2013

Y1 - 2013

N2 - Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~2.5 μm, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost linearly with their content in fuel ash. This linear tendency was affected when the fuels were mixed with additives. The volatility of trace elements during combustion was assessed by applying a relative enrichment (RE) factor, and TEM–EDS analysis was conducted to provide qualitative interpretations. The results indicated that As, Cd, Pb, Sb and Zn were highly volatile when co-firing coal and SRF, whereas the volatility of Cr was relatively low. Compared with coal combustion, co-firing of coal and SRF slightly enhanced the volatility of Cd, Pb and Zn, but reduced the volatility of Cr and Sb. The Cl-based additives increased the volatility of Cd, Pb and As, whereas addition of ammonium sulphate generally decreased the volatility of trace elements. Addition of kaolinite reduced the volatility of Pb, while the influence on other trace elements was insignificant. The results from the present work imply that trace element emission would be significantly increased when coal is co-fired with SRF, which may greatly enhance the toxicity of the dusts from coal-fired power plant. In order to minimize trace element emission in co-combustion, in addition to lowering the trace element content in SRF, utilizing SRF with low Cl content and coal with high S and aluminosilicates content would be desirable.

AB - Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~2.5 μm, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost linearly with their content in fuel ash. This linear tendency was affected when the fuels were mixed with additives. The volatility of trace elements during combustion was assessed by applying a relative enrichment (RE) factor, and TEM–EDS analysis was conducted to provide qualitative interpretations. The results indicated that As, Cd, Pb, Sb and Zn were highly volatile when co-firing coal and SRF, whereas the volatility of Cr was relatively low. Compared with coal combustion, co-firing of coal and SRF slightly enhanced the volatility of Cd, Pb and Zn, but reduced the volatility of Cr and Sb. The Cl-based additives increased the volatility of Cd, Pb and As, whereas addition of ammonium sulphate generally decreased the volatility of trace elements. Addition of kaolinite reduced the volatility of Pb, while the influence on other trace elements was insignificant. The results from the present work imply that trace element emission would be significantly increased when coal is co-fired with SRF, which may greatly enhance the toxicity of the dusts from coal-fired power plant. In order to minimize trace element emission in co-combustion, in addition to lowering the trace element content in SRF, utilizing SRF with low Cl content and coal with high S and aluminosilicates content would be desirable.

KW - Pulverized coal combustion

KW - Co-combustion

KW - Solid recovered fuel

KW - Trace element

U2 - 10.1016/j.fuproc.2011.05.007

DO - 10.1016/j.fuproc.2011.05.007

JO - Fuel Processing Technology

JF - Fuel Processing Technology

SN - 0378-3820

VL - 105

SP - 212

EP - 221

ER -