Frozen chicken nuggets are classified as pre-prepared frozen meals. These products are convenient to consumers as they are easy to prepare and allow for long storage by freezing. Over the years, spoilage of frozen food products caused by fungi has been a continual problem for the food industry since mold can develop when frozen foods are allowed to attain temperatures of -10°C, or above. The growth of fungi on the food surface results in economic losses and represents a hazard to public health due to the possibility of mycotoxin production. The aim of this study was to identify the species of filamentous fungi involved in the spoilage of frozen chicken nuggets and determine their ability to produce mycotoxins under laboratorial conditions. A total of 7 samples of frozen chicken nuggets were analyzed by dilution plating in potato dextrose agar (PDA). These products had been returned by customers due to visible mold growth on their surface. The predominant species found were *Penicillium glabrum*, *Penicillium polonicum*, *Penicillium manginii*, *Penicillium crustosum*, *Penicillium commune*, and *Penicillium solitum*. Analysis of the profile of secondary metabolites was carried out in HPLC after growing the isolates in Czapek yeast autolysate agar (CYA) and yeast extract agar and sucrose (YESA) and extracting the exoltites with a solution of ethyl acetate, dichloromethane, methanol, and formic acid. Some isolates of these species showed an ability to synthesize mycotoxins such as cyclopiazonic acid citreoviridin, roquefortine C, penitrem A, and verrucosidin under standard conditions. Considering the occurrence of fungal spoilage in frozen food and the potential hazard involved, more studies on psychrophilic fungi growth in foods stored at low temperatures are necessary.

General information
State: Published
Organisations: Department of Systems Biology, Fungal Chemodiversity, Universidade Federal de Santa Maria
Contributors: Wigmann, E. F., Saccomori, F., Bernardi, A. O., Frisvad, J. C., Copetti, M. V.
Number of pages: 4
Pages: 219-222
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Food Research International
Volume: 67
ISSN (Print): 0963-9969
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.9 SJR 1.472 SNIP 1.467
Web of Science (2017): Impact factor 3.52
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.87 SJR 1.612 SNIP 1.675
Web of Science (2016): Impact factor 3.086
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.66 SJR 1.508 SNIP 1.629
Web of Science (2015): Impact factor 3.182
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.52 SJR 1.487 SNIP 1.751
Web of Science (2014): Impact factor 2.818
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.68 SJR 1.526 SNIP 1.802
Web of Science (2013): Impact factor 3.05
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.31 SJR 1.563 SNIP 1.775
Web of Science (2012): Impact factor 3.005
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.42 SJR 1.521 SNIP 1.697
Web of Science (2011): Impact factor 3.15
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.365 SNIP 1.426
Web of Science (2010): Impact factor 2.416
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.487 SNIP 1.522
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.29 SNIP 1.43
Scopus rating (2007): SJR 1.271 SNIP 1.671
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.018 SNIP 1.299
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.798 SNIP 1.338
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.846 SNIP 1.191
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.665 SNIP 1.095
Scopus rating (2002): SJR 0.714 SNIP 1.11
Scopus rating (2001): SJR 0.625 SNIP 0.801
Scopus rating (2000): SJR 0.615 SNIP 0.636
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.581 SNIP 0.647

Original language: English
Keywords: Food spoilage, Frozen chicken nugget, Fungi Plantae (Fungi, Microorganisms, Nonvascular Plants, Plants) - Fungi Imperfecti or Deuteromycetes [15500] Penicillium commune species contaminant Penicillium crustosum species contaminant Penicillium solitum species contaminant Penicillium polonicum species contaminant Penicillium genus filamentous fungi common contaminant Penicillium manginii species contaminant, citreoviridin 25425-12-1 toxin, mycotoxin, cyclopiazonic acid 83136-88-3 toxin, mycotoxin, Czapek yeast autolysate agar, dichloromethane 75-09-2, Ethyl acetate 141-78-6, Formic acid 64-18-6, Methanol 67-56-1, Penitrem A 12627-35-9 toxin, mycotoxin, Potato dextrose agar, Roquefortine C 58735-64-1 toxin, mycotoxin, Secondary metabolites, Sucrose 57-50-1, verrucosidin 88389-71-3 toxin, mycotoxin, yeast extract agar, 10060, Biochemistry studies - General, 10068, Biochemistry studies - Carbohydrates, 13502, Food technology - General and methods, 22501, Toxicology - General and methods, 22502, Toxicology - Foods, food residues, additives and preservatives, dilution plating method laboratory techniques, Foods, Toxicology, Food, Cyclopiazonic acid, Mycotoxins, Citreoviridin, Toxicity, Penitrem, Dogs, Rats, Molds, Breaded meat, Low-temperature spoilage, Psychrophilic fungi, Mycotoxin, Algae, Animals, Dichloromethane, Food microbiology, Hazards, Losses, Meats, Metabolites, Molding, Polysaccharides, Temperature, Yeast, Low temperatures, Penicillium glabrum, Potato dextrose agars, Standard conditions, Yeast extract agar, Spoilage

Electronic versions:
Toxigenic_penicillia_spoiling_frozen_chicken_nuggets.pdf
DOIs:
10.1016/j.foodres.2014.11.025
Source: FindIt
Source-ID: 272997811
Research output: Research - peer-review › Journal article – Annual report year: 2015