Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron holography to characterize an electrically-biased Si p+- n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic potential simulations highlights several remaining challenges to quantitative analysis. Our results illustrate how the determination of reliable potential distributions from phase images of electrically biased devices requires electrostatic fringing fields, surface charges, specimen preparation damage and the effects of limited spatial resolution to be taken into account.

General information
Publication status: Published
Organisations: Center for Electron Nanoscopy, Imperial College London, Technical University of Denmark, The Ohio State University, Forschungszentrum Jülich GmbH
Contributors: Yazdi, S., Kasama, T., Beleggia, M., Samaie Yekta, M., McComb, D. W., Twitchett-Harrison, A. C., Dunin-Borkowski, R. E.
Pages: 10-20
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: ULTRAMICROSCOPY
Volume: 152
ISSN (Print): 0304-3991
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.78 SJR 2.14 SNIP 1.37
Web of Science (2015): Impact factor 2.874
Web of Science (2015): Indexed yes
Original language: English
Keywords: Doping, In-situ biasing, Off-axis electron holography, Pn junction, Doping (additives), Electric fields, Electron holography, Electrons, Electrostatic devices, Electrostatics, Holography, Image resolution, Semiconductor doping, Semiconductor junctions, Specimen preparation, Charge density distributions, Electrostatic potential distribution, Electrostatic potentials, P-n junction, Potential distributions, Semiconductor device performance, Spatial resolution, Semiconductor devices
Electronic versions:
SYazdi_5Nov2014.pdf
DOIs:
10.1016/j.ultramic.2014.12.012
Source: FindIt
Source-ID: 273877249
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review