Towards a phase field model of the microstructural evolution of duplex steel with experimental verification

A phase field model to study the microstructural evolution of a polycrystalline dual-phase material with conserved phase fraction has been implemented, and 2D simulations have been performed. For 2D simulations, the model predicts the cubic growth well-known for diffusion-controlled systems. Some interphase boundaries are found to show a persistent non-constant curvature, which seems to be a feature of multi-phase materials. Finally, it is briefly outlined how this model is to be applied to investigate microstructural evolution in duplex steel. © (2012) Trans Tech Publications, Switzerland.

General information
State: Published
Organisations: Department of Physics, Neutrons and X-rays for Materials Physics, Department of Energy Conversion and Storage, Imaging and Structural Analysis, Northwestern University
Contributors: Poulsen, S. O., Voorhees, P., Lauridsen, E. M.
Pages: 635-642
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Materials Science Forum
Volume: 715-716
ISSN (Print): 0255-5476
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.3 SJR 0.18 SNIP 0.317
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.28 SJR 0.188 SNIP 0.302
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.29 SJR 0.218 SNIP 0.326
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.33 SJR 0.261 SNIP 0.414
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.28 SJR 0.238 SNIP 0.338
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.34 SJR 0.279 SNIP 0.467
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.33 SJR 0.248 SNIP 0.415
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.273 SNIP 0.406
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.343 SNIP 0.389
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.298 SNIP 0.358
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.314 SNIP 0.498
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.369 SNIP 0.511
Web of Science (2006): Indexed yes