Topology optimization of unsteady flow problems using the lattice Boltzmann method - DTU Orbit (13/12/2018)

Topology optimization of unsteady flow problems using the lattice Boltzmann method

This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems. The optimization problem is solved with a gradient based method, and the design sensitivities are computed by solving the discrete adjoint problem. For moderate Reynolds number flows, it is demonstrated that topology optimization can successfully account for unsteady effects such as vortex shedding and time-varying boundary conditions. Such effects are relevant in several engineering applications, i.e. fluid pumps and control valves.

General information

State: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics
Contributors: Nørgaard, S. A., Sigmund, O., Lazarov, B. S.
Pages: 291-307
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of Computational Physics
Volume: 307
ISSN (Print): 0021-9991

Ratings:
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 3.23 SJR 2.047 SNIP 1.85
- Web of Science (2017): Impact factor 2.864
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 3.12 SJR 2.049 SNIP 1.818
- Web of Science (2016): Impact factor 2.746
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 2.92 SJR 2.054 SNIP 1.929
- Web of Science (2015): Impact factor 2.556
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 3.12 SJR 2.103 SNIP 2.164
- Web of Science (2014): Impact factor 2.434
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 3.3 SJR 2.156 SNIP 2.389
- Web of Science (2013): Impact factor 2.485
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 2.69 SJR 2.108 SNIP 2.014
- Web of Science (2012): Impact factor 2.138
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): CiteScore 2.99 SJR 2.001 SNIP 2.191
- Web of Science (2011): Impact factor 2.31
- ISI indexed (2011): ISI indexed yes
- Web of Science (2011): Indexed yes