Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration into the downhole electronics unit proved to be challenging, because of the space constraints and the proximity of the cooling zone (electronics) to the heat sink (well fluid). The topology optimization approach was therefore chosen to optimize the thermal design of the actively cooled electronics section and the SIMP (Solid Isotropic Material with Penalization) method was implemented in COMSOL Multiphysics. Several optimized designs were obtained for different operating conditions and their sensitivity to the change in the boundary conditions was evaluated. A final design for the electronics unit was selected, according to the topology optimization results and assembly constraints, and compared to the optimized cases.

General information
- **State**: Published
- **Organisations**: Department of Energy Conversion and Storage, Electrofunctional materials, Department of Mechanical Engineering, Solid Mechanics
- **Contributors**: Soprani, S., Klaas Haertel, J. H., Lazarov, B. S., Sigmund, O., Engelbrecht, K.
- **Number of pages**: 7
- **Publication date**: 2015

Host publication information
- **Title of host publication**: Proceedings. COMSOL Conference 2015
- **Publisher**: COMSOL Inc.
- **Keywords**: Topology optimization, SIMP, Electronics cooling
- **Electronic versions**: https://www.comsol.fr/conference2015/download-paper/28731

Research output: Research - peer-review › Article in proceedings – Annual report year: 2015