Topology Optimization of Active Transport Flows

Fluid flows with particle transport are common in many industrial processes and components. The design of components for addition or removal of particles as well as mixing or stratification is of great importance in the specific processes. This work presents a methodology to apply topology optimization to the design of multiphase flow components. The work is a natural extension of the density based topology optimization procedure applied to design of passive mixers and coolers where the transported matter is not influencing the properties of the governing fluid flow model. In this work the effective properties of the fluid is changing with concentration. In this work a multiphase fluid flow model is combined with a Brinkman penalization in order to introduce the design of the fluid component. Gradient based optimization is applied in order to optimize the performance of flow components. The paper present the design and optimization of a particle separator and the important interpolation for modeling both solids, fluids and particles with a monolithic problem formulation. The interplay with the physics behind the model are discussed and the influence of parameters are demonstrated.

General information
State: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics
Contributors: Andreason, C. S.
Number of pages: 1
Pages: 41
Publication date: 2017

Host publication information
Title of host publication: Proceedings of the 30th Nordic Seminar on Computational Mechanics (NSCM-30)
Editors: Høsberg, J., Pedersen, N.
Keywords: Topology optimization, Multiphase flow, Particles, FEM
Electronic versions:
TOPOLOGY_OPTIMIZATION.pdf
Research output: Research - peer-review » Conference abstract in proceedings – Annual report year: 2017