Topology optimization of a pseudo 3D thermofluid heat sink model - DTU Orbit
(11/01/2019)

Topology optimization of a pseudo 3D thermofluid heat sink model
This paper investigates the application of density-based topology optimization to the design of air-cooled forced convection heat sinks. To reduce the computational burden that is associated with a full 3D optimization, a pseudo 3D optimization model comprising a 2D modeled conducting metal base layer and a thermally coupled 2D modeled thermofluid design layer is used. Symmetry conditions perpendicular to the flow direction are applied to generate periodic heat sink designs. The optimization objective is to minimize the heat sink heat transfer resistance for a fixed pressure drop over the heat sink and a fixed heat production rate in the base plate. Optimized designs are presented and the resulting fin geometry is discussed from a thermal engineering point of view and compared to fin shapes resulting from a pressure drop minimization objective. Parametric studies are conducted to analyze the influence of the pressure drop on the heat sink heat transfer resistance. To quantify the influence of the assumptions made in the pseudo 3D optimization model, validation simulations with a body-fitted mesh in 2D and 3D are conducted. A good agreement between optimization model and validation simulations is found, confirming the physical validity of the utilized optimization model. Two topology optimized designs are exemplarily benchmarked against a size optimized parallel fin heat sink and an up to 13.6% lower thermal resistance is found to be realized by the topology optimization.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials, Department of Mechanical Engineering, Solid Mechanics
Contributors: Haertel, J. H. K., Engelbrecht, K., Lazarov, B. S., Sigmund, O.
Pages: 1073-1088
Publication date: 2018
Peer-reviewed: Yes

Publication information
Volume: 121
ISSN (Print): 0017-9310
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.23 SJR 1.498 SNIP 2.048
Web of Science (2017): Impact factor 3.891
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.75 SJR 1.605 SNIP 2.013
Web of Science (2016): Impact factor 3.458
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.09 SJR 1.733 SNIP 1.905
Web of Science (2015): Impact factor 2.857
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.97 SJR 1.584 SNIP 1.973
Web of Science (2014): Impact factor 2.383
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.38 SJR 0.88 SNIP 2.134
Web of Science (2013): Impact factor 2.522
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.79 SJR 1.626 SNIP 2.121
Web of Science (2012): Impact factor 2.315
ISI indexed (2012): ISI indexed yes