Topology Adaptive Interface Tracking Using the Deformable Simplicial Complex

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

NullPointerException

View graph of relations

We present a novel, topology-adaptive method for deformable interface tracking, called the Deformable Simplicial Complex (DSC). In the DSC method, the interface is represented explicitly as a piecewise linear curve (in 2D) or surface (in 3D) which is a part of a discretization (triangulation/tetrahedralization) of the space, such that the interface can be retrieved as a set of faces separating triangles/tetrahedra marked as inside from the ones marked as outside (so it is also given implicitly). This representation allows robust topological adaptivity and, thanks to the explicit representation of the interface, it suffers only slightly from numerical diffusion. Furthermore, the use of an unstructured grid yields robust adaptive resolution. Also, topology control is simple in this setting. We present the strengths of the method in several examples: simple geometric flows, fluid simulation, point cloud reconstruction, and cut locus construction.
Original languageEnglish
JournalA C M Transactions on Graphics
Publication date2012
Volume31
Journal number3
PagesNo. 24
Number of pages12
ISSN0730-0301
DOIs
StatePublished

Bibliographical note

© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in A C M Transactions on Graphics, 31, 3, (May 2012) http://doi.acm.org/10.1145/2167076.2167082

CitationsWeb of Science® Times Cited: 2

Keywords

  • Algorithms
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 9657042