Tin-Containing Silicates: Identification of a Glycolytic Pathway via 3-Deoxyglucosone - DTU Orbit (27/11/2018)

Tin-Containing Silicates: Identification of a Glycolytic Pathway via 3-Deoxyglucosone

Inorganic glycolytic systems, capable of transforming glucose through a cascade of catalytic steps, can lead to efficient chemical processes utilising carbohydrates as feedstock. Tin-containing silicates, such as Sn-Beta, are showing potential for the production of lactates from sugars through a cascade of four to five sequential steps. Currently, there is a limited understanding of the competing glycolytic pathways within these systems. Here we identify dehydration of glucose to 3-deoxyglucosone as an important pathway that occurs in addition to retro-aldol reaction of hexoses when using tin-containing silicates. It is possible to influence the relative carbon flux through these pathways by controlling the amount of alkali metal salts present in the reaction mixture. In the absence of added potassium carbonate, at least 15–30% carbon flux via 3-deoxyglucosone is observed. Addition of just a few ppm of potassium carbonate makes retro-aldol pathways dominant and responsible for about 60-70% of the overall carbon flux. The 3-deoxyglucosone pathway results in new types of chemical products accessible directly from glucose. Furthermore, it is argued that 3-deoxyglucosone is a contributing source of some of the methyl lactate formed from hexoses using tin-containing silicates in the presence of alkali metal salts. Further catalyst design and system tuning will permit even better control between these two different glycolytic pathways and will enable highly selective catalytic transformations of glucose to a variety of chemical products using tin-containing silicates.

General information
State: Published
Organisations: Department of Chemistry, Organic Chemistry, Centre for Catalysis and Sustainable Chemistry, Aarhus University, Haldor Topsoe AS
Contributors: Tolborg, S., Meier, S., Sádaba, I., Elliot, S. G., K. Kristensen, S., Shunmugavel, S., Riisager, A., Fristrup, P., Skrydstrup, T., Taarning, E.
Pages: 3360-3369
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Green Chemistry
Volume: 18
ISSN (Print): 1463-9262
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.99 SJR 2.496 SNIP 1.847
Web of Science (2017): Impact factor 8.586
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.86 SJR 2.598 SNIP 2.021
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.21 SJR 2.452 SNIP 1.884
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 8.05 SJR 2.386 SNIP 1.989
Web of Science (2014): Impact factor 8.02
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 7.44 SJR 2.28 SNIP 1.804
Web of Science (2013): Impact factor 6.852
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.64 SJR 2.444 SNIP 1.701
Web of Science (2012): Impact factor 6.828