TIMES-DK - DTU Orbit (18/01/2019)

TIMES-DK: Technology-rich multi-sectoral optimisation model of the Danish energy system

As Denmark progresses towards a carbon neutral future, energy system models are required to address the challenges of the energy transition. This article describes design, input data and current usage of TIMES-DK, the first Danish energy system model that includes the complete national energy system, covering long-term technology investments. The article aims at explaining the modelling approach; highlighting strengths and reflecting upon limitations of the model; illustrating possible applications of TIMES-DK and inspiring new model developments. Some of the key strengths of the model include simultaneous optimisation of operation and investments across the complete energy system over the whole modelling horizon, explicit representation of the most important sectors of the economy, modular structure and the possibility of linking to a computable general equilibrium model for an additional insight on, e.g. public finance or CO₂-leakage. TIMES-DK is being developed in close collaboration between an energy agency, a university and a consulting firm, to improve its robustness, relevance and impact on policy making. It allows for a wide range of applications including exploratory energy scenarios and policy analysis. To meet challenges of the future, further development of the model is needed and consequently the article provides references to ongoing projects addressing current development needs, such as improved representation of transport and flexible handling of the temporal dimension. To support a democratic and transparent process around decisions for the future Danish energy system, TIMES-DK should become available to interested parties.

General information
State: Published
Organisations: Technical University of Denmark, Department of Management Engineering, Systems Analysis, Danish Energy Agency, E4SMA
Contributors: Balyk, O., Andersen, K. S., Dockweiler, S., Gargiulo, M., Karlsson, K., Næraa, R., Petrović, S., Tattini, J., Termansen, L. B., Venturini, G.
Pages: 13-22
Publication date: 1 Jan 2019
Peer-reviewed: Yes

Publication information
Journal: Energy Strategy Reviews
Volume: 23
ISSN (Print): 2211-467X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.38 SJR 1.009 SNIP 1.29
Web of Science (2017): Impact factor 2.164
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.9 SJR 0.833 SNIP 0.883
Web of Science (2016): Impact factor 1.891
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.82 SJR 1.337 SNIP 1.098
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.85 SJR 1.316 SNIP 1.123
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.53 SJR 0.639 SNIP 1.061
Original language: English
Keywords: Denmark, Energy systems analysis, Energy transition, Model application, Model description, TIMES model
DOIs:
10.1016/j.esr.2018.11.003
URLs:
http://www.scopus.com/inward/record.url?scp=85058169032&partnerID=8YFLogxK (Link to publication in Scopus)
Source: Scopus
Source-ID: 85058169032
Research output: Research - peer-review › Journal article – Annual report year: 2019