Time series analysis of continuous-wave coherent Doppler Lidar wind measurements - DTU Orbit (22/12/2018)

Time series analysis of continuous-wave coherent Doppler Lidar wind measurements
The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed.
Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hovsore in Western Jutland, Denmark is presented for the first time.

General information
State: Published
Organisations: Test and Measurements, Wind Energy Division, Risø National Laboratory for Sustainable Energy, Meteorology
Contributors: Sjöholm, M., Mikkelsen, T., Mann, J., Enevoldsen, K., Courtney, M.
Pages: U411-U416
Publication date: 2008
Peer-reviewed: No

Publication information
Journal: IOP Conference Series: Earth and Environmental Science
Volume: 1
ISSN (Print): 1755-1307
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 0.3 SJR 0.149 SNIP 0.327
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 0.38 SJR 0.199 SNIP 0.58
Scopus rating (2015): CiteScore 0.22 SJR 0.255 SNIP 0.349
Scopus rating (2014): CiteScore 0.19 SJR 0.164 SNIP 0.365
Scopus rating (2013): CiteScore 0.06 SJR 0.173 SNIP 0.125
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 0.29 SJR 0.321 SNIP 0.131
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 0 SJR 0.11 SNIP 0
ISI indexed (2011): ISI indexed no
Web of Science (2008): Indexed yes
Original language: English
DOIs: 10.1088/1755-1315/1/1/012051
Source: orbit
Source-ID: 222940
Research output: Research › Conference article – Annual report year: 2008