Time scale of scour around a pile in combined waves and current

The time scale of the scour process around a circular vertical pile is studied in combined waves and current. A series of tests were carried out in a flume with pile diameters 40 mm and 75 mm, in both steady current, waves and combined waves and current. In the combined wave and current flow regime the waves and the current were co-directional. All the tests were conducted in the live bed regime.

The time scale of scour in combined waves and current is governed by three parameters, namely the current-velocity-to-wave-velocity ratio (\(U_{cw} \)), the Keulegan–Carpenter number (\(KC \)) and Shields parameter (\(\Theta_w \)). The time scale of scour increases significantly when even a slight current is superimposing on a wave. The \(KC \) dependence of the time scale \(T \) is mainly observed for low values of \(U_{cw} \) in the wave dominated regime. For \(U_{cw} \) values larger than 0.4 no clear \(KC \) dependency was observed. The time scale decreases with increasing \(\Theta_w \) over the entire range of \(U_{cw} \).

General information
State: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering
Contributors: Petersen, T. U., Sumer, B. M., Fredsøe, J.
Number of pages: 8
Publication date: 2012
Peer-reviewed: Yes
Keywords: Coastal structures, Slender piles, Offshore structures, Pile, Scour, Time scale, Vertical cylinder, Steady current, Wave, Offshore wind farm

Bibliographical note
ICSE6-043
Source: dtu
Source-ID: u::5595
Research output: Research - peer-review \A Paper – Annual report year: 2012