Thermodynamics of the multicomponent vapor-liquid equilibrium under capillary pressure difference

Publication: Research - peer-reviewJournal article – Annual report year: 2001

View graph of relations

We discuss the two-phase multicomponent equilibrium, provided that the phase pressures are different due to the action of capillary forces. We prove the two general properties of such an equilibrium, which have previously been known for a single-component case, however, to the best of our knowledge, not for the multicomponent mixtures. The importance is emphasized on the space of the intensive variables P, T and mu (i), where the laws of capillary equilibrium have a simple geometrical interpretation. We formulate thermodynamic problems specific to such an equilibrium, and outline changes to be introduced to common algorithms of flash calculations in order to solve these problems. Sample calculations show large variation of the capillary properties of the mixture in the very neighborhood of the phase envelope and the restrictive role of the spinodal surface as a boundary for possible equilibrium states with different pressures. (C) 2001 Elsevier Science B.V. All rights reserved.
Original languageEnglish
JournalFluid Phase Equilibria
Volume178
Issue number1-2
Pages (from-to)17-32
ISSN0378-3812
StatePublished - 2001
Peer-reviewedYes
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 5562512