Thermodynamic modeling of acidic gas solubility in aqueous solutions of MEA, MDEA and MEA-MDEA blends - DTU Orbit (07/12/2018)

Thermodynamic modeling of acidic gas solubility in aqueous solutions of MEA, MDEA and MEA-MDEA blends

The thermodynamic framework that was developed in a previous work [Vrachnos et al. Ind. Eng. Chem. Res. 2004, 43, 2798] for the description of chemical and vapor-liquid equilibria of carbon dioxide, hydrogen sulfide, and their mixtures in aqueous methyl diethanolamine (MDEA) solutions is revised and extended in this study to the absorption of carbon dioxide into aqueous monoethanolamine (MEA) solutions and aqueous MDEA-MEA blends. The results of the model are compared with experimental data taken from the literature. Very satisfactory predictions of acidic gas vapor-liquid equilibrium over MDEA, MEA, and their blends at various concentrations, acidic gas loadings, and temperatures are obtained.

General information
State: Published
Organisations: Center for Phase Equilibria and Separation Processes, Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering
Contributors: Vrachnos, A., Kontogeorgis, G., Voutsas, E.
Pages: 5148-5154
Publication date: 2006
Peer-reviewed: Yes

Publication information
Journal: Industrial & Engineering Chemistry Research
Volume: 45
Issue number: 14
ISSN (Print): 0888-5885
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.4 SJR 0.978 SNIP 1.203
Web of Science (2017): Impact factor 3.141
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.1 SJR 0.95 SNIP 1.155
Web of Science (2016): Impact factor 2.843
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.87 SJR 0.938 SNIP 1.145
Web of Science (2015): Impact factor 2.567
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.85 SJR 1.009 SNIP 1.287
Web of Science (2014): Impact factor 2.587
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.6 SJR 0.975 SNIP 1.232
Web of Science (2013): Impact factor 2.235
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.56 SJR 1.054 SNIP 1.32
Web of Science (2012): Impact factor 2.206
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.58 SJR 1.076 SNIP 1.236
Web of Science (2011): Impact factor 2.237