Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

A promising way to store wind and solar electricity is by electrolysis of H2O and CO2 using solid oxide electrolysis cells (SOECs) to produce synthetic hydrocarbon fuels that can be used in existing fuel infrastructure. Pressurized operation decreases the cell internal resistance and enables improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired hydrocarbon fuel and avoiding damage to the cells. The main parameters of cell operating temperature, pressure, inlet gas composition and reactant utilization are varied to examine how they influence cell thermoneutral and reversible potentials, in situ formation of methane and carbon at the Ni–YSZ electrode, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher reactant utilization. Optimal operating conditions are dependent on the total system design.
Original languageEnglish
JournalInternational Journal of Hydrogen Energy
Issue number22
Pages (from-to)17101-17110
StatePublished - 2012
CitationsWeb of Science® Times Cited: 62


  • Solid oxide electrolysis cells, Thermodynamic analysis, Synthetic fuel production
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

ID: 12630856