Thermo-cleavable solvents for printing conjugated polymers: Application in polymer solar cells - DTU Orbit (23/01/2019)

Thermo-cleavable solvents for printing conjugated polymers: Application in polymer solar cells

The synthesis and characterization of a number of so-called thermo-cleavable solvents are described with their application in all-air, all-solution and all-screen-printed polymer solar cells. These solvents were developed to meet some requirements for printing techniques such as long “open time” combined with fast drying on heating that cannot be attained with the usual solvents used for conjugated polymers. The new solvents have low volatility at ambient conditions, but decompose thermally at 130–180 °C to low-boiling and highly volatile products. Characterization by thermogravimetric analysis (TGA) and high-temperature NMR established the onset temperature of decomposition, the rate of the reaction and the nature of the products. Printing experiments with inks based on these solvents together with conjugated polymers are exemplified for polymer solar cell devices to show how they enable large-scale production of polymer solar cells using screen printing. Screen-printed solar cells are still very inferior to state of the art P3HT/PCBM technology, but it is our view that it is necessary to explore these printing technologies if polymer solar cells are to ever become commercial products.

General information
State: Published
Organisations: Solar Energy Programme, Risø National Laboratory for Sustainable Energy
Contributors: Jørgensen, M., Hagemann, O., Alstrup, J., Krebs, F. C.
Pages: 413-421
Publication date: 2009
Peer-reviewed: Yes

Publication information
Volume: 93
Issue number: 4
ISSN (Print): 0927-0248
Ratings:
 BFI (2019): BFI-level 2
 Web of Science (2019): Indexed yes
 BFI (2018): BFI-level 2
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 4.83 SJR 1.459 SNIP 1.532
 Web of Science (2017): Impact factor 5.018
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 2
 Scopus rating (2016): CiteScore 4.97 SJR 1.599 SNIP 1.71
 Web of Science (2016): Impact factor 4.784
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 2
 Scopus rating (2015): CiteScore 5.16 SJR 1.8 SNIP 1.851
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 2
 Scopus rating (2014): CiteScore 5.87 SJR 2.19 SNIP 2.348
 Web of Science (2014): Impact factor 5.337
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 5.58 SJR 2.179 SNIP 2.529
 Web of Science (2013): Impact factor 5.03
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 5.25 SJR 2.441 SNIP 2.654
 Web of Science (2012): Impact factor 4.63
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.16 SJR 2.182 SNIP 2.577
Web of Science (2011): Impact factor 4.542
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.494 SNIP 2.105
Web of Science (2010): Impact factor 4.746
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.942 SNIP 1.957
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.626 SNIP 1.449
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.363 SNIP 1.49
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.438 SNIP 1.788
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.15 SNIP 1.607
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.94 SNIP 1.174
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.997 SNIP 1.322
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.168 SNIP 1.102
Scopus rating (2001): SJR 0.883 SNIP 1.229
Scopus rating (2000): SJR 0.686 SNIP 0.987
Scopus rating (1999): SJR 0.646 SNIP 0.779
Original language: English
Keywords: Solar energy
DOIs:

Bibliographical note
This work was supported by the Danish Strategic Research Council (DSF 2104-05-0052 and 2104-07-0022).
Source: orbit
Source-ID: 238963
Research output: Research - peer-review › Journal article – Annual report year: 2009