Thermal operating window for PEDOT:PSS films and its related thermoelectric properties

The intrinsically conducting polymer PEDOT:PSS is widely used and has found high recognition due to its excellent electrical conductivity. Its potential applications cover many fields, e.g. thermoelectric energy conversion. Therefore we compared the thermoelectric properties of pristine and DMSO treated PEDOT:PSS films at potential operating temperatures. Here we observed the electrical degradation of the film up to complete failure. Further, the thermal aging of PEDOT:PSS still lacks of understanding. It is pointed out that PEDOT:PSS films show a complex degradation mechanism which includes a morphological and a chemical part. In the range of room temperature and ~160 °C PEDOT:PSS films follow the known exponential degradation which imposes morphological degradation, while at higher temperatures this law is not suitable to match the experimental data. Thus we extended the known exponential equation by an additional exponential degradation term which shows good agreement with the experimental data. The optical absorption spectrum indicates a loss in bipolaron and polaron charge carriers, which reflects the degradation behavior. It can be seen that changes in the optical absorption spectrum after isothermal annealing for more than 50 h occur at temperatures around 120 °C, which marks the transition from morphological to chemical degradation.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Mixed Conductors, Ceramic Engineering & Science, Fraunhofer Institute for Material and Beam Technology
Contributors: Stepień, L., Roch, A., Tkachov, R., Leupolt, B., Han, L., Van Nong, N., Leyens, C.
Pages: 49-54
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Synthetic Metals
Volume: 225
ISSN (Print): 0379-6779
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.49 SJR 0.672 SNIP 0.766
Web of Science (2017): Impact factor 2.526
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.45 SJR 0.666 SNIP 0.756
Web of Science (2016): Impact factor 2.435
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.27 SJR 0.624 SNIP 0.735
Web of Science (2015): Impact factor 2.299
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.42 SJR 0.709 SNIP 0.934
Web of Science (2014): Impact factor 2.252
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.48 SJR 0.719 SNIP 0.951
Web of Science (2013): Impact factor 2.222
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.19 SJR 0.844 SNIP 0.993
Web of Science (2012): Impact factor 2.109
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.01 SJR 0.784 SNIP 0.907
Web of Science (2011): Impact factor 1.829
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.812 SNIP 0.867
Web of Science (2010): Impact factor 1.871
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.961 SNIP 1.08
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.072 SNIP 0.918
Scopus rating (2007): SJR 1.224 SNIP 0.977
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.921 SNIP 0.729
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.953 SNIP 0.798
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.8 SNIP 0.653
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.921 SNIP 0.892
Scopus rating (2002): SJR 1.287 SNIP 0.696
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.799 SNIP 0.875
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.571 SNIP 0.551
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.838 SNIP 0.911
Original language: English
Keywords: Aging, Decomposition, Degradation, Electrical conductivity, Thermoelectric properties, PEDOT-PSS
DOIs: 10.1016/j.synthmet.2016.11.017
Research output: Research - peer-review › Journal article – Annual report year: 2017