Thermal decomposition of ammonium hexachloroosmate

Structural changes of (NH₄)₂[OsCl₆] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH₄)₂[OsCl₆] transforms directly to metallic Os without the formation of any crystalline intermediates but through a plateau where no reactions occur. XANES and EXAFS data by means of Multivariate Curve Resolution (MCR) analysis show that thermal decomposition occurs with the formation of an amorphous intermediate {OsCl₄}ₓ with a possible polymeric structure. Being revealed for the first time the intermediate was subjected to determine the local atomic structure around osmium. The thermal decomposition of hexachloroosmate is much more complex and occurs within a minimum two-step process, which has never been observed before.

General information
Publication status: Published
Organisations: Department of Physics, Neutrons and X-rays for Materials Physics, RAS - Nikolaev Institute of Inorganic Chemistry of SB, Novosibirsk State University, Swansea University
Contributors: Asanova, T. I., Kantor, I., Asanov, I. P., Korenev, S. V., Yusenko, K. V.
Number of pages: 8
Pages: 33134-33141
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Physical Chemistry Chemical Physics
Volume: 18
ISSN (Print): 1463-9076
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.06 SJR 1.685 SNIP 1.113
Web of Science (2016): Impact factor 4.123
Web of Science (2016): Indexed yes
Original language: English
DOIs:
10.1039/C6CP07133C
Source: FindIt
Source-ID: 2349064461
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review