Therapeutic Vaccine Against Primate Papillomavirus Infections of the Cervix - DTU Orbit (13/11/2017)

Therapeutic Vaccine Against Primate Papillomavirus Infections of the Cervix

Currently available prophylactic vaccines have no therapeutic efficacy for preexisting human papillomavirus (HPVs) infections, do not target all oncogenic HPVs and are insufficient to eliminate the burden of HPV induced cancer. We aim to develop an alternative HPV vaccine which is broadly effective and capable of clearing preexisting infection. In an initial attempt to develop a broadly reactive therapeutic vaccine, we designed a putative papillomavirus (PV) ancestor antigen (circulating sequence derived antigenic sequences E1E2-CDSE1E2) based on the conserved E1 and E2 protein sequences from existing oncogenic HPV strains. This antigen was found to be as related to circulating oncogenic Macaca fascicularis papillomaviruses (MfPVs) as to oncogenic HPVs. The CDSE1E2 antigen was fused to a T-cell adjuvant and encoded in chimpanzee 3 and 63 adenoviral vectors. We first showed that the combination of these 2 vaccines induced long-lasting potent CDSE1E2 specific T cell responses in outbred mice. This prime-boost regimen was then tested in female macaques naturally infected with MfPVs. All immunized animals (16/16) responded to the vaccine antigen but with reduced cross-reactivity against existing PVs. Preexisting MfPV infections did not prime vaccine inducible immune responses. Importantly, immunized oncogenic MfPV type 3 (MfPV3) infected animals that responded toward MfPV3 were able to diminish cervical MfPV3 DNA content. Although insufficient breadth was achieved, our results suggest that a relevant level of E1E2 specific T cell immunity is achievable and might be sufficient for the elimination of PV infection. Importantly, naturally infected macaques, offer a relevant model for testing vaccines aimed at eliminating mucosal PV infections.

General information
State: Published
Organisations: Department of Biotechnology and Biomedicine, Department of Bio and Health Informatics, Disease Intelligence and Molecular Evolution
Authors: Ragonnaud, E. (Ekstern), Andersson, A. C. (Ekstern), Mariya, S. (Ekstern), Pedersen, A. G. (Intern), Burk, R. D. (Ekstern), Folgori, A. (Ekstern), Colloca, S. (Ekstern), Cortese, R. (Ekstern), Nicosia, A. (Ekstern), Pamungkas, J. (Ekstern), Iskandriati, D. (Ekstern), Holst, P. J. (Ekstern)
Number of pages: 11
Pages: 51-61
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Immunotherapy
Volume: 40
Issue number: 2
ISSN (Print): 1524-9557
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 2.046 SNIP 0.937 CiteScore 4.27
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 2.194 SNIP 0.919 CiteScore 3.94
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.711 SNIP 0.851 CiteScore 3.74
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.752 SNIP 0.807 CiteScore 3.59
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.482 SNIP 0.849 CiteScore 3.54
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.448 SNIP 0.812 CiteScore 3.42
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.729 SNIP 0.896
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.558 SNIP 0.77
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.113 SNIP 0.964
Scopus rating (2007): SJR 2.038 SNIP 1.071
Scopus rating (2006): SJR 1.786 SNIP 0.898
Scopus rating (2005): SJR 1.413 SNIP 0.835
Scopus rating (2004): SJR 1.589 SNIP 1.103
Scopus rating (2003): SJR 1.352 SNIP 0.878
Scopus rating (2002): SJR 1.098 SNIP 0.632
Scopus rating (2001): SJR 0.991 SNIP 0.713
Scopus rating (2000): SJR 1.087 SNIP 0.776
Scopus rating (1999): SJR 1.306 SNIP 0.865
Original language: English
DOIs:
10.1097/CJ.0000000000000153
Source: FindIt
Source-ID: 2352376329
Publication: Research - peer-review › Journal article – Annual report year: 2017