Theory of Self-pulsing in Photonic Crystal Fano Lasers

Laser self-pulsing was a phenomenon exclusive to macroscopic lasers until recently, where self-starting laser pulsation in a microscopic photonic crystal Fano laser was reported. In this paper a theoretical model is developed to describe the Fano laser, including descriptions of the highly-dispersive Fano mirror, the laser frequency and the threshold gain. The model is based upon a combination of conventional laser rate equations and coupled-mode theory. The dynamical model is used to demonstrate how the laser has two regimes of operation, continuous-wave output and self-pulsing, and these regimes are characterised using phase diagrams, establishing the regime of self-pulsing numerically. Furthermore, the physics behind the self-pulsing mechanism are explained in detail and it is demonstrated how cavity absorption makes the Fano mirror function as a saturable absorber, leading to Q-switched pulse generation. A stability analysis is used to demonstrate how the dominant mechanism of instability is relaxation oscillations becoming un-damped. Finally the effect of varying key self-pulsing parameters is investigated by characterisation of the change in self-pulsing regions.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing
Contributors: Rasmussen, T. S., Yu, Y., Mørk, J.
Number of pages: 13
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Laser & Photonics Reviews
Volume: 11
Issue number: 5
Article number: 1700089
ISSN (Print): 1863-8880
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 9.02 SJR 4.228 SNIP 2.988
Web of Science (2017): Impact factor 8.529
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 8.71 SJR 4.013 SNIP 3.351
Web of Science (2016): Impact factor 8.434
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 8.54 SJR 4.205 SNIP 3.479
Web of Science (2015): Impact factor 7.486
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 8.62 SJR 4.958 SNIP 4.446
Web of Science (2014): Impact factor 8.008
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 9.26 SJR 5.132 SNIP 4.796
Web of Science (2013): Impact factor 9.313
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 7.59 SJR 5.144 SNIP 3.617
Web of Science (2012): Impact factor 7.976
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 7.98 SJR 5.844 SNIP 4.857
Web of Science (2011): Impact factor 7.388