Theoretical study on volatile organic compound removal and energy performance of a novel heat pump assisted solid desiccant cooling system

A theoretical model was established for predicting the volatile organic compound (VOC) removal and energy performance of a novel heat pump assisted solid desiccant cooling system (HP-SDC). The HP-SDC was proposed based on the combination of desiccant rotor with heat pump, and was designed for cooling, dehumidification and indoor air cleaning in normal office, commercial or residential buildings. The desiccant rotor was used for dehumidification and indoor air cleaning; the heat pump provided sensible cooling and regeneration heat for the desiccant rotor. The theoretical model consisted of two sub-models. One sub-model was used to simulate the heat, moisture and VOC transfer in the desiccant rotor; the other sub-model was used to predict the energy performance of the heat pump. Combining the two sub-models, the energy performance and VOC removal effect of the HP-SDC could be simulated and predicted. The theoretical model was validated by experimental data. Validating results showed that the model could be used to predict the performance of HP-SDC. The results also showed that the HP-SDC could clean air borne contaminants effectively and could provide an energy efficient choice for ventilation.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Section for Indoor Environment, University of Science and Technology of China, Tianjin University
Contributors: Nie, J., Fang, L., Zhang, G., Sheng, Y., Kong, X., Zhang, Y., Olesen, B. W.
Number of pages: 10
Pages: 233-242
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Building and Environment
Volume: 85
ISSN (Print): 0360-1323
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.37 SJR 2.067 SNIP 2.463
Web of Science (2015): Indexed yes
Original language: English
Keywords: Air cleaning, Desiccant rotor, Energy performance, Heat pump, Theoretical model, Air cleaners, Cleaning, Computer simulation, Cooling, Cooling systems, Driers (materials), Forecasting, Heat pump systems, Humidity control, Pumps, Thermoelectric equipment, Volatile organic compounds, Desiccant rotors, Heat pumps, Theoretical modeling, Energy efficiency
DOIs:
10.1016/j.buildenv.2014.11.034
Source: FindIt
Source-ID: 273435003
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review