The turbulence scales of a wind turbine wake: A revisit of extended k-epsilon models

The turbulence time and length scales of a single wind turbine wake subjected to atmospheric turbulence are calculated from two large eddy simulations that differ in ambient turbulence intensity. The smallest turbulence length scale in the wake is about half the rotor radius and it increases for higher ambient turbulence levels. The large eddy simulations are compared with Reynolds-averaged Navier-Stokes simulations employing the standard and three extended k-epsilon models: the k-epsilon-fP model of van der Laan, the k-epsilon model of Shih and k-epsilon model of Durbin. It is shown that all three extended k-epsilon models can be written in a similar form. All Reynolds-averaged Navier-Stokes based turbulence models predict turbulence time scales that are comparable to the turbulence time scales of the large eddy simulations. The standard k-epsilon model underpredicts the velocity deficit because the turbulence length scale is overpredicted compared to the large eddy simulations. The performance of the k-epsilon model of Durbin shows to be very dependent on the ambient turbulence level and it is therefore less suited for wind turbine wake simulations. The k-epsilon model of Shih and the k-epsilon-fP model of van der Laan are recommended to be used for wind turbine wake simulations because their results are similar and compare well with results of large eddy simulations for both a low and high ambient turbulence intensity due to a limitation of the turbulence length scale in the near wake.

General information
Publication status: Published
Organisations: Department of Wind Energy, Aerodynamic design, Fluid Mechanics
Contributors: van der Laan, M. P., Andersen, S. J.
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics: Conference Series
Volume: 1037
Issue number: 7
Article number: 072001
ISSN (Print): 1742-6596
Ratings:
BFI (2018): BFI-level 1
Original language: English
Electronic versions:
van_der_Laan_2018_J._Phys._3A_Conf._Ser._1037_072001.pdf
DOI:
10.1088/1742-6596/1037/7/072001

Bibliographical note
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd.
Source: Findit
Source-ID: 2435910131
Research output: Contribution to journal » Conference article – Annual report year: 2018 » Research » peer-review