The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells

Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing concentrations of docetaxel. Whole exome sequencing performed at five successive stages during this process was used to identify single point mutational events, insertions/deletions and copy number alterations associated with the acquisition of docetaxel resistance. Acquired coding variation undergoing positive selection and harboring characteristics likely to be functional were further prioritized using network-based approaches. A number of genomic changes were found to be undergoing evolutionary selection, some of which were likely to be functional. Of the five stages of progression toward resistance, most resistance relevant genomic variation appeared to arise midway towards fully resistant cells corresponding to passage 31 (5 nM docetaxel) for MDA-MB-231 and passage 16 (1.2 nM docetaxel) for MCF-7, and where the cells also exhibited a period of reduced growth rate or arrest, respectively. MCF-7 cell acquired several copy number gains on chromosome 7, including ABC transporter genes, including ABCB1 and ABCB4, as well as DMTF1, CLDN12, CROT, and SRI. For MDA-MB-231 numerous copy number losses on chromosome X involving more than 30 genes was observed. Of these genes, CASK, POLA1, PRDX4, MED14 and PIGA were highly prioritized by the applied network-based gene ranking approach. At higher docetaxel concentration MCF-7 subclones exhibited a copy number loss in EZF4, and the gene encoding this important transcription factor was down-regulated in MCF-7 resistant cells. Conclusions: Our study of the evolution of acquired docetaxel resistance identified several genomic changes that might explain development of docetaxel resistance. Interestingly, the most relevant resistance-associated changes appeared to originate midway through the evolution towards fully resistant cell lines. Our data suggest that no single genomic event sufficiently predicts resistance to docetaxel, but require genomic alterations affecting multiple pathways that in concert establish the final resistance stage.

General information

State: Published
Organisations: Center for Biological Sequence Analysis, Department of Systems Biology, Functional Human Variation, Sino - Danish Breast Cancer Research Centre
Number of pages: 15
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: BMC Genomics
Volume: 17
Article number: 442
ISSN (Print): 1471-2164
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.08 SJR 2.11 SNIP 1.151
Web of Science (2017): Impact factor 3.73
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.05 SJR 2.163 SNIP 1.096
Web of Science (2016): Impact factor 3.729
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.3 SJR 2.348 SNIP 1.159
Web of Science (2015): Impact factor 3.867
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.18 SJR 2.327 SNIP 1.199
Web of Science (2014): Impact factor 3.986
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.39 SJR 2.195 SNIP 1.188
Web of Science (2013): Impact factor 4.041
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.61 SJR 2.236 SNIP 1.243
Web of Science (2012): Impact factor 4.397
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 4.38 SJR 2.307 SNIP 1.191
Web of Science (2011): Impact factor 4.073
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.142 SNIP 1.037
Web of Science (2010): Impact factor 4.206
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.21 SNIP 1.012
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.287 SNIP 1.007
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.12 SNIP 1.039
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.878 SNIP 0.927
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.287 SNIP 0.915
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.218 SNIP 0.728
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.94 SNIP 0.571
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 7.349 SNIP 0.529
Scopus rating (2001): SJR 0.132 SNIP 0.016
Original language: English
Keywords: Breast cancer, Docetaxel resistance, Taxane, Exome sequencing
Electronic versions:
The_stepwise_evolution_of_the_exome_during_acquisition_of_docetaxel_resistance_in_breast_cancer_cells.pdf
DOIs:
10.1186/s12864-016-2749-4

Bibliographical note
© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Source: FindIt
Source-ID: 2305518180
Research output: Research - peer-review \ Journal article – Annual report year: 2015