The state of organic solar cells-A meta analysis

Solar cells that convert sunlight into electrical power have demonstrated a large and consistent growth through several decades. The growth has spawned research on new technologies that potentially enable much faster, less costly and environmentally friendly manufacture from earth abundant materials. Here we review carbon based solar cells through a complete analysis of all the data that has been reported so far and we highlight what can be expected from carbon based technologies and draw scenarios of how it can be made of immediate use.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Functional organic materials, Zhejiang University, Chinese Academy of Sciences
Pages: 84-93
Publication date: 2013
Peer-reviewed: Yes

Publication information
Volume: 119
ISSN (Print): 0927-0248
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.83 SJR 1.459 SNIP 1.532
Web of Science (2017): Impact factor 5.018
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.97 SJR 1.599 SNIP 1.71
Web of Science (2016): Impact factor 4.784
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.16 SJR 1.8 SNIP 1.851
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.87 SJR 2.19 SNIP 2.348
Web of Science (2014): Impact factor 5.337
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.58 SJR 2.179 SNIP 2.529
Web of Science (2013): Impact factor 5.03
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.25 SJR 2.441 SNIP 2.654
Web of Science (2012): Impact factor 4.63
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.16 SJR 2.182 SNIP 2.577
Web of Science (2011): Impact factor 4.542
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.494 SNIP 2.105
Web of Science (2010): Impact factor 4.746
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.942 SNIP 1.957
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.626 SNIP 1.449
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.363 SNIP 1.49
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.438 SNIP 1.788
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.15 SNIP 1.607
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.94 SNIP 1.174
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.997 SNIP 1.322
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.168 SNIP 1.102
Scopus rating (2001): SJR 0.883 SNIP 1.229
Scopus rating (2000): SJR 0.686 SNIP 0.987
Scopus rating (1999): SJR 0.646 SNIP 0.779
Original language: English
Keywords: Polymer solar cells, All data reported until 2012, Statistical analysis, Comparison with other PV, Tandem cells
DOIs: 10.1016/j.solmat.2013.05.034
Source: dtu
Source-ID: u::8175
Research output: Research - peer-review > Journal article – Annual report year: 2013