The starch-binding domain family CBM41 - an in silico analysis of evolutionary relationships
- DTU Orbit (20/11/2018)

The starch-binding domain family CBM41 - an in silico analysis of evolutionary relationships: Carbohydrate-binding module family 41

Within the CAZy database, there are 81 carbohydrate-binding module (CBM) families. A CBM represents a non-catalytic domain in a modular arrangement of glycoside hydrolases (GHs). The present in silico study has been focused on starch-binding domains from the family CBM41 that are usually part of pullulanases from the α-amylase family GH13. Currently there are more than 1,600 sequences classified in the family CBM41, almost exclusively from Bacteria, and so a study was undertaken in an effort to divide the members into relevant groups (subfamilies) and also to contribute to the evolutionary picture of family CBM41. The CBM41 members adopt a β-sandwich fold (~100 residues) with one carbohydrate-binding site formed by the side-chains of three aromatic residues that interact with carbohydrate. The family CBM41 can be divided into two basic subdivisions, distinguished from each other by a characteristic sequence pattern or motif of the three essential aromatics as follows: (i) "W-W-~10aa-W" (the so-called Streptococcus/Klebsiella-type); and (ii) "W-W-~30aa-W" (Thermotoga-type). Based on our bioinformatics analysis it is clear that the first and second positions of the motif can be occupied by aromatic residues (Phe, Tyr, His) other than tryptophan, resulting in the existence of six different carbohydrate-binding CBM41 groups, that reflect mostly differences in taxonomy, but which should retain the ability to bind an α-glucan. In addition, three more groups have been proposed that, although lacking the crucial aromatic motif, could possibly employ other residues from remaining parts of their sequence for binding carbohydrate. This article is protected by copyright. All rights reserved.

General information
State: Published
Organisations: Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Slovak Academy of Sciences, 2 Nicklaus Green
Contributors: Janeček, Š., Majzlová, K., Svensson, B., MacGregor, E. A.
Number of pages: 28
Pages: 1480-1492
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Proteins: Structure, Function, and Bioinformatics
Volume: 85
Issue number: 8
ISSN (Print): 0887-3585
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.29 SJR 1.362 SNIP 0.761
Web of Science (2017): Impact factor 2.274
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.25 SJR 1.361 SNIP 0.754
Web of Science (2016): Impact factor 2.289
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.4 SJR 1.437 SNIP 0.822
Web of Science (2015): Impact factor 2.499
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.55 SJR 1.527 SNIP 0.9
Web of Science (2014): Impact factor 2.627
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.21 SJR 2.063 SNIP 1.007
Web of Science (2013): Impact factor 2.921
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.28 SJR 2.208 SNIP 1.053