The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. - DTU Orbit (18/11/2018)

The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. We present the RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox: a software suite that allows for semi-automated reconstruction of genome-scale models. It makes use of published models and/or the KEGG database, coupled with extensive gap-filling and quality control features. The software suite also contains methods for visualizing simulation results and omics data, as well as a range of methods for performing simulations and analyzing the results. The software is a useful tool for system-wide data analysis in a metabolic context and for streamlined reconstruction of metabolic networks based on protein homology. The RAVEN Toolbox workflow was applied in order to reconstruct a genome-scale metabolic model for the important microbial cell factory Penicillium chrysogenum Wisconsin54-1255. The model was validated in a bibliomic study of in total 440 references, and it comprises 1471 unique biochemical reactions and 1006 ORFs. It was then used to study the roles of ATP and NADPH in the biosynthesis of penicillin, and to identify potential metabolic engineering targets for maximization of penicillin production.
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 3.709 SNIP 1.555
Web of Science (2010): Impact factor 5.515
Web of Science (2010): Indexed yes
Scopus rating (2009): SJR 3.428 SNIP 1.428
Web of Science (2009): Indexed yes
Scopus rating (2008): SJR 4.045 SNIP 1.397
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.396 SNIP 1.329
Scopus rating (2006): SJR 2.419 SNIP 1.082
Web of Science (2006): Indexed yes
Original language: English
Electronic versions:
pcbi.1002980.pdf
DOIs:
10.1371/journal.pcbi.1002980
Source: dtu
Source-ID: n:oai:DTIC-ART:pubmed/385072167::33087
Research output: Research - peer-review \ Journal article – Annual report year: 2013