The north-eastern aeolian 'European Sand Belt' as potential record of environmental changes: A case study from Eastern Latvia and Southern Estonia

The Latvian and Estonian inland dunes belong to the north-eastern part of the 'European Sand Belt' (ESB). These dunes are widely distributed over broad glaciolacustrine plains and Late Glacial alluvial deltas, considered to be potential sources for the aeolian material. Little is known about these aeolian sediments and their substratum; here we present a detailed sedimentary structural and textural characterisation together with a luminescence-based chronology. Through a comparison between grain-size, rounding of quartz grains and surface characteristics in medium/coarse (0.5-0.8 mm) sand, and the light mineral content, we found an alternation of aeolian and periglacial components. Further, short-lasting aeolian abrasion and/or transportation periods, and a significant contribution of a nearby sediment source are suggested. Luminescence dating points to aeolian sand accumulation and dune formation between ~16 ka and ~9 ka. However, we also observed some presumably watertable controlled environmental conditions at ~13 ka; this corresponds with the occurrence of an ice-dammed/proglacial lake.

General information
State: Published
Organisations: Center for Nuclear Technologies, Radiation Physics, Lund University, Aarhus University, University of Latvia
Contributors: Kalińska-Nartiša, E., Thiel, C., Nartišs, M., Buylaert, J., Murray, A. S.
Number of pages: 14
Pages: 59-72
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Aeolian Research
Volume: 22
ISSN (Print): 1875-9637
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.65 SJR 1.117 SNIP 1.103
Web of Science (2017): Impact factor 2.346
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.44 SJR 1.137 SNIP 1.334
Web of Science (2016): Impact factor 2.298
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.23 SJR 0.969 SNIP 1.061
Web of Science (2015): Impact factor 2.275
Scopus rating (2014): CiteScore 2.6 SJR 1.212 SNIP 1.281
Web of Science (2014): Impact factor 2.309
Scopus rating (2013): CiteScore 2.68 SJR 1.165 SNIP 1.524
Web of Science (2013): Impact factor 2.841
Scopus rating (2012): CiteScore 2.41 SJR 1.313 SNIP 1.215
Web of Science (2012): Impact factor 2.52
Scopus rating (2011): CiteScore 1.94 SJR 1.089 SNIP 0.857
Web of Science (2011): Impact factor 2.179
Scopus rating (2010): SJR 1.281 SNIP 0.876
Original language: English
Keywords: Aeolian deposits, Eastern Latvia, European Sand Belt, Optically stimulated luminescence, Sedimentary features, Southern Estonia
DOIs: 10.1016/j.aeolia.2016.06.002
Source: Findit
Source-ID: 2305930034
Research output: Research - peer-review ¿ Journal article – Annual report year: 2016