The noise of the Vacquier type sensors referred to changes of the sensor geometrical dimensions - DTU Orbit (24/12/2018)

The noise of the Vacquier type sensors referred to changes of the sensor geometrical dimensions
One of the most important properties of the magnetic sensors is the low noise. This contribution focuses on the effects on the Vacquier type sensor noise performance determined by changes of the sensor geometrical dimensions: the length of the magnetic cores; the length of the detector coil; the length of the excitation coil. The results of this study are applied for the optimisation of the Vacquier type fluxgate sensors. (C) 2000 Elsevier Science S.A. All rights reserved.

General information
State: Published
Organisations: Department of Automation
Contributors: Moldovanu, C., Brauer, P., Nielsen, O. V., Petersen, J. R.
Pages: 197-199
Publication date: 2000
Peer-reviewed: Yes

Publication information
Journal: Sensors and Actuators A: Physical
Volume: A81
Issue number: 1-3
ISSN (Print): 0924-4247
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.79 SJR 0.699 SNIP 1.363
Web of Science (2017): Impact factor 2.311
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.79 SJR 0.787 SNIP 1.627
Web of Science (2016): Impact factor 2.499
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.73 SJR 0.826 SNIP 1.553
Web of Science (2015): Impact factor 2.201
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.41 SJR 0.866 SNIP 1.771
Web of Science (2014): Impact factor 1.903
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.53 SJR 0.819 SNIP 1.762
Web of Science (2013): Impact factor 1.943
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.34 SJR 0.91 SNIP 2.113
Web of Science (2012): Impact factor 1.841
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.5 SJR 0.909 SNIP 2.103
Web of Science (2011): Impact factor 1.802
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.11 SNIP 1.85
Web of Science (2010): Impact factor 1.941