The iron member of the CPO-27 coordination polymer series: Synthesis, characterization, and intriguing redox properties

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

The microporous coordination polymer CPO-27-Fe was synthesized from iron salts and 2,5-dihydroxyterephthalic acid by microwave assisted solvothermal synthesis. The crystal structures of the as-synthesized compounds were determined by Rietveld refinement from powder X-ray diffraction data using synchrotron radiation, revealing a honeycomb-type framework, isostructural to the other compounds in the CPO-27-M series. Exposure to oxygen was found to have pronounced effects on the material, like change of color, band gap, and structural details which we associate with oxidation of the iron(II) in the M2(dhtp) framework to iron(III). XPS measurements confirm the presence of iron in these oxidation states in the respective compounds. The desolvation process of CPO-27-Fe was investigated using variable temperature powder X-ray diffraction and mass spectrometry. CPO-27-Fe passes through several phase transitions when heated up during which it reversibly changes between oxidation states +2 and +3, remaining in divalent state in the empty framework structure Fe2(dhtp) in the last crystalline phase. These measurements also indicate that methanol contained in the pore after synthesis is transformed into formaldehyde during the heating process, potentially making CPO-27-Fe a viable catalyst in redox processes. The effect of the extraordinary high concentration of accessible open metal sites in the desolvated CPO-27-Fe was investigated by gas adsorption experiments using hydrogen, carbon dioxide and oxygen. Oxygen adsorption was reversible at low temperatures, but exposure to oxygen at room temperature led to blocking of the open metal site and partial deconstruction of the framework. Significantly larger amounts of oxygen than nitrogen are adsorbed at room temperature.
Original languageEnglish
JournalMicroporous and Mesoporous Materials
Publication date2012
Volume157
Pages62-74
ISSN1387-1811
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 7

Keywords

  • Iron, Metal–organic framework, Open metal sites, Redox property, Gas adsorption
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 9561676