The incoming global technological and industrial revolution towards competitive sustainable manufacturing - DTU Orbit (05/03/2019)

The incoming global technological and industrial revolution towards competitive sustainable manufacturing

The major global challenges we are facing today need to be addressed in the multifaceted context of economy, society, environment and technology (ESET). In recent years, the consensus of calling for sustainable development (SD) and implementation has emerged. Along with this belief, high added value, knowledge-based, competitive sustainable manufacturing (CSM) has been widely considered as main enabler. This paper presents the necessary steps from economic growth to sustainable development. The reference model for proactive action (RMfPA) is proposed to develop and implement CSM, at national and global levels. Furthermore, we also review strategies to pursue CSM at the macro-meso-field level in addition to ongoing national initiatives in different countries and by international organizations. A case study concerning the European Manufuture initiative is cited. The overall results conclude that RMfPA is a good ground for pursuing CSM. Necessary actions by stakeholders at different levels, spanning from policymakers to Industry, University and Research Institutes, are also discussed. CIRP, as a global academy, can play a relevant role at strategic, scientific and technological levels for the incoming global technological and industrial revolution: CSM.

General information
State: Published
Organisations: Quantitative Sustainability Assessment, Department of Management Engineering
Contributors: Jovane, F., Yoshikawa, H., Alting, L., Boer, C., Westkamper, E., Williams, D., Tseng, M., Seliger, G., Paci, A.
Pages: 641-659
Publication date: 2008
Peer-reviewed: Yes

Publication information
Journal: CIRP annals
Volume: 57
Issue number: 2
ISSN (Print): 0007-8506
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.09 SJR 2.034 SNIP 2.811
Web of Science (2017): Impact factor 3.333
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.93 SJR 2.055 SNIP 3.158
Web of Science (2016): Impact factor 2.893
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.83 SJR 2.088 SNIP 3.294
Web of Science (2015): Impact factor 2.492
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.39 SJR 3.123 SNIP 3.992
Web of Science (2014): Impact factor 2.542
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.87 SJR 2.598 SNIP 3.818
Web of Science (2013): Impact factor 2.541
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.04 SJR 2.088 SNIP 4.156
Web of Science (2012): Impact factor 2.251
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.81 SJR 2.117 SNIP 3.46
Web of Science (2011): Impact factor 1.708
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.12 SNIP 3.449
Web of Science (2010): Impact factor 1.684
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.652 SNIP 2.219
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.056 SNIP 1.645
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.119 SNIP 1.55
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.892 SNIP 1.96
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.988 SNIP 1.904
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.591 SNIP 2.376
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.142 SNIP 1.823
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.866 SNIP 2.26
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.575 SNIP 2.161
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.788 SNIP 2.182
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.779 SNIP 2.611
Original language: English
Keywords: Manufuture, Sustainable development, Manufacturing
DOIs:
10.1016/j.cirp.2008.09.010
Source: orbit
Source-ID: 243753
Research output: Research - peer-review ; Journal article – Annual report year: 2008