The impact of residential density on vehicle usage and fuel consumption: Evidence from national samples - DTU Orbit (15/12/2018)

The impact of residential density on vehicle usage and fuel consumption: Evidence from national samples

This paper investigates the impact of residential density on household vehicle usage and fuel consumption. We estimate a simultaneous equations system to account for the potential residential self-selection problem. While most previous studies focus on a specific region, this paper uses national samples from the 2001 National Household Travel Survey. The estimation results indicate that residential density has a statistically significant but economically modest influence on vehicle usage, which is similar to that in previous studies. However, the joint effect of the contextual density measure (density in the context of its surrounding area) and residential density on vehicle usage is quantitatively larger than the sole effect of residential density. Moving a household from a suburban to an urban area reduces household annual mileage by 18%. We also find that a lower neighborhood residential density induces consumer choices toward less fuel-efficient vehicles, which confirms the finding in Brownstone and Golob (2009). • Density has a significant but small impact on household vehicle use. • Changing land type has a larger impact on household vehicle use. • Including household characteristics eliminates self-selection bias. © 2013 Elsevier B.V.

General information
State: Published
Organisations: Department of Transport, Transport policy and behaviour
Contributors: Kim, J., Brownstone, D.
Pages: 196-206
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Energy Economics
Volume: 40
ISSN (Print): 0140-9883
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.26 SJR 1.916 SNIP 1.852
Web of Science (2017): Impact factor 3.91
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.89 SJR 2.393 SNIP 1.966
Web of Science (2016): Impact factor 3.199
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.74 SJR 2.812 SNIP 1.926
Web of Science (2015): Impact factor 2.862
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.63 SJR 2.85 SNIP 2.163
Web of Science (2014): Impact factor 2.708
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.45 SJR 1.928 SNIP 2.082
Web of Science (2013): Impact factor 2.58
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.17 SJR 2.083 SNIP 1.984
Web of Science (2012): Impact factor 2.538
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.29 SJR 2.409 SNIP 2.13
Web of Science (2011): Impact factor 2.344
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.05 SNIP 1.972