The geometrical origin of the strain-twist coupling in double helices

Publication: Research - peer-reviewJournal article – Annual report year: 2011

Documents

DOI

View graph of relations

A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends only on the pitch angle. For pitch angles below 39.4◦ strain leads to further winding, while for larger pitch angles strain leads to unwinding. The zero-twist structure, with a pitch angle of 39.4◦, is at the unique point between winding and unwinding and independent of the mechanical properties of the double helix. The existence of zero-twist structures, i.e. structures that display neither winding, nor unwinding under strain is discussed. Close-packed double helices are shown to extend rather than shorten when twisted. Numerical estimates of this elongation upon winding are given for DNA, chromatin, and RNA.
Original languageEnglish
Article number012108
JournalA I P Advances
Volume1
Number of pages7
ISSN2158-3226
DOIs
StatePublished - 2011
CitationsWeb of Science® Times Cited: 6

Keywords

  • DNA, Proteins, Molecular biophysics, Molecular configurations, Biomechanics
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 5709019