The future of antiviral immunotoxins

There is a constant need for new therapeutic interventions in a wide range of infectious diseases. Over the past few years, the immunotoxins have entered the stage as promising antiviral treatments. Immunotoxins have been extensively explored in cancer treatment and have achieved FDA approval in several cases. Indeed, the design of new anticancer immunotoxins is a rapidly developing field. However, at present, several immunotoxins have been developed targeting a variety of different viruses with high specificity and efficacy. Rather than blocking a viral or cellular pathway needed for virus replication and dissemination, immunotoxins exert their effect by killing and eradicating the pool of infected cells. By targeting a virus-encoded target molecule, it is possible to obtain superior selectivity and drastically limit the side effects, which is an immunotoxin-related challenge that has hindered the success of immunotoxins in cancer treatment. Therefore, it seems beneficial to use immunotoxins for the treatment of virus infections. One recent example showed that targeting of virus-encoded 7 transmembrane (7TM) receptors by immunotoxins could be a future strategy for designing ultraspecific antiviral treatment, ensuring efficient internalization and hence efficient eradication of the pool of infected cells, both in vitro and in vivo. In this review, we provide an overview of the mechanisms of action of immunotoxins and highlight the advantages of immunotoxins as future anti-viral therapies.

General information
State: Published
Organisations: National Veterinary Institute, Section for Virology, University of Copenhagen
Contributors: Spiess, K., Høy Jakobsen, M., Kledal, T. N., Rosenkilde, M. M.
Number of pages: 15
Pages: 911-925
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Leukocyte Biology
Volume: 99
Issue number: 6
ISSN (Print): 0741-5400
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.56 SJR 2.04 SNIP 0.98
Web of Science (2017): Impact factor 4.224
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4 SJR 2.473 SNIP 1.09
Web of Science (2016): Impact factor 4.018
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.95 SJR 2.459 SNIP 1.141
Web of Science (2015): Impact factor 4.165
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.94 SJR 2.589 SNIP 1.173
Web of Science (2014): Impact factor 4.289
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.22 SJR 2.651 SNIP 1.188
Web of Science (2013): Impact factor 4.304
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.6 SJR 2.624 SNIP 1.269
Web of Science (2012): Impact factor 4.568
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1