View graph of relations

Two independent field intervention experiments were carried out in school classrooms in late summer (in 2004 and 2005). The air temperature was manipulated by either operating or idling split cooling units installed for the purpose. In one of these experiments, the outdoor air supply rate was also manipulated. The conditions were established for one week at a time in a blind crossover design with repeated measures on two classes of 10- to 12-year-old children. Six to eight exercises exemplifying different aspects of schoolwork (numerical and language-based) were performed as part of normal lessons. Pupils indicated their environmental perceptions and the intensity of any symptoms on visual analogue scales. Their thermal sensation changed from slightly too warm to neutral, and the performance of two numerical and two language-based tests was significantly improved when the temperature was reduced from 25 degrees C to 20 degrees C (77 degrees F to 68 degrees F). When the outdoor air supply rate was increased from 5.2 to 9.6 L/s (11.0 to 20.3 cfm) per person, their performance of four numerical exercises improved significantly, confirming the results of previously reported experiments in the same series. The above improvements were mainly in terms of the speed at which tasks were performed, with negligible effects on error rate. Most school classrooms worldwide experience raised air temperatures during increased thermal loads, e.g., in warm weather; these results show that providing some means of avoiding elevated temperatures would improve educational attainment.
Original languageEnglish
JournalH V A C & R Research
Issue number2
Pages (from-to)193-220
StatePublished - 2007
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

ID: 4592757