The effect of signal leakage and glacial isostatic rebound on GRACE-derived ice mass changes in Iceland - DTU Orbit (01/12/2018)

The effect of signal leakage and glacial isostatic rebound on GRACE-derived ice mass changes in Iceland

Monthly gravity field models from the GRACE satellite mission are widely used to determine ice mass changes of large ice sheets as well as smaller glaciers and ice caps. Here, we investigate in detail the ice mass changes of the Icelandic ice caps as derived from GRACE data. The small size of the Icelandic ice caps, their location close to other rapidly changing ice covered areas and the low viscosity of the mantle below Iceland make this especially challenging. The mass balance of the ice caps is well constrained by field mass balance measurements, making this area ideal for such investigations. We find that the ice mass changes of the Icelandic ice caps derived from GRACE gravity field models are influenced by both the large gravity change signal resulting from ice mass loss in southeast Greenland and the mass redistribution within the Earth mantle due to glacial isostatic adjustment since the Little Ice Age (~ 1890 AD). To minimize the signal that leaks towards Iceland from Greenland, we employ an independent mass change estimate of the Greenland Ice Sheet derived from satellite laser altimetry. We also estimate the effect of post Little Ice Age glacial isostatic adjustment, from knowledge of the ice history and GPS network constrained crustal deformation data. We find that both the leakage from Greenland and the post Little Ice Age glacial isostatic adjustment are important to take into account, in order to correctly determine Iceland ice mass changes from GRACE, and when applying these an average mass balance of the Icelandic ice caps of -11.4 +/- 2.2 Gt yr^{-1} for the period 2003-2010 is found. This number corresponds well with available mass balance measurements.

General information
State: Published
Organisations: National Space Institute, Geodynamics, University of Iceland
Contributors: Sørensen, L. S., Jarosch, A. H., Adalgeirsdottir, G., Barletta, V. R., Forsberg, R., Pálsson, F., Bjornsson, H., Johannesson, T.
Pages: 226-233
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Geophysical Journal International
Volume: 209
Issue number: 1
ISSN (Print): 0956-540X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.54 SJR 1.506 SNIP 1.195
Web of Science (2017): Impact factor 2.528
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.61 SJR 1.749 SNIP 1.465
Web of Science (2016): Impact factor 2.414
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.46 SJR 1.796 SNIP 1.354
Web of Science (2015): Impact factor 2.484
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.63 SJR 1.901 SNIP 1.473
Web of Science (2014): Impact factor 2.56
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.15 SJR 2.376 SNIP 1.677
Web of Science (2013): Impact factor 2.724
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.78 SJR 2.367 SNIP 1.43
Web of Science (2012): Impact factor 2.853
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.52 SJR 2.241 SNIP 1.248
Web of Science (2011): Impact factor 2.42
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.156 SNIP 1.389
Web of Science (2010): Impact factor 2.411
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.187 SNIP 1.512
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.243 SNIP 1.235
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.061 SNIP 1.312
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.655 SNIP 1.573
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.177 SNIP 1.448
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.07 SNIP 1.437
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.625 SNIP 1.351
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.651 SNIP 1.269
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.826 SNIP 1.312
Scopus rating (2000): SJR 2.509 SNIP 1.507
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.451 SNIP 1.36

Original language: English
Keywords: GEOCHEMISTRY, TIME-VARIABLE GRAVITY, SEA-LEVEL RISE, GREENLAND, SURFACE, BALANCE, EARTH, CAPS, ACCELERATION, VARIABILITY, ANTARCTICA, Inverse theory, Time variable gravity, Global change from geodesy, Glaciology, Arctic region
Electronic versions:
 ggx008.pdf
DOIs:
 10.1093/gji/ggx008

Bibliographical note
This article has been accepted for publication inGeophysical Journal International © The Authors 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society.
Source: FindIt
Source-ID: 2351033692
Research output: Research - peer-review › Journal article – Annual report year: 2017