The effect of cultivation media and washing whole-cell biocatalysts on monoamine oxidase catalyzed oxidative desymmetrization of 3-azabicyclo[3,3,0]octane - DTU Orbit (11/12/2018)

It is well known that washing whole-cells containing enzyme activities after fermentation, but prior to biocatalysis can improve their activity in the subsequent reaction. In this paper, we quantify the impact of both the fermentation media and cell washing on the performance of whole-cell biocatalysis. The results are illustrated using a recombinant monoamine oxidase (expressed in Escherichia coli, used in resting state) for the oxidative desymmetrization of 3-azabicyclo[3,3,0]octane. It was shown that the need for washing biocatalyst prior to use in a reaction is dependent upon growth medium. Unlike cells grown in LB medium, washing of the cells was essential for cells grown on TB medium. With TB media, washing the cells improved the final conversion by approximately a factor of two. Additionally, over 50-fold improvement was achieved in initial activity. A potential reason for this improvement in activity was identified to be the increase in transfer of substrates across the cell membrane as a result of cell washing. (C) 2015 Elsevier Inc. All rights reserved.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, Slovak University of Technology
Contributors: Ramesh, H., Zajkoska, P., Rebros, M., Woodley, J. M.
Pages: 7-13
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Enzyme and Microbial Technology
Volume: 83
ISSN (Print): 0141-0229
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.85 SJR 0.754 SNIP 0.944
Web of Science (2017): Impact factor 2.932
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.83 SJR 0.774 SNIP 1.028
Web of Science (2016): Impact factor 2.502
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.63 SJR 0.846 SNIP 0.95
Web of Science (2015): Impact factor 2.624
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.12 SJR 1.063 SNIP 1.212
Web of Science (2014): Impact factor 2.322
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.2 SJR 1.17 SNIP 1.377
Web of Science (2013): Impact factor 2.966
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.78 SJR 1.166 SNIP 1.27
Web of Science (2012): Impact factor 2.592
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes