The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters - DTU Orbit (13/01/2019)

The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters

Natural products originating from microorganisms are frequently used in antimicrobial and anticancer drugs, pesticides, herbicides or fungicides. In the last years, the increasing availability of microbial genome data has made it possible to access the wealth of biosynthetic clusters responsible for the production of these compounds by genome mining. antiSMASH is one of the most popular tools in this field. The antiSMASH database provides pre-computed antiSMASH results for many publicly available microbial genomes and allows for advanced cross-genome searches. The current version 2 of the antiSMASH database contains annotations for 6200 full bacterial genomes and 18,576 bacterial draft genomes and is available at https://antismash-db.secondarymetabolites.org/.

General information
State: Published
Organisations: New Bioactive Compounds, Novo Nordisk Foundation Center for Biosustainability, Wageningen University & Research, University of Warwick, University of Manchester
Pages: D625–D630
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Nucleic Acids Research
Volume: 47
Issue number: D1
ISSN (Print): 0305-1048
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 10.84 SJR 9.025 SNIP 3.028
Web of Science (2017): Impact factor 11.561
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 9.28 SJR 7.883 SNIP 2.744
Web of Science (2016): Impact factor 10.162
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 9.48 SJR 7.358 SNIP 2.631
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 8.74 SJR 6.64 SNIP 2.552
Web of Science (2014): Impact factor 9.112
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 8.46 SJR 6.801 SNIP 2.284
Web of Science (2013): Impact factor 8.808
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Web of Science (2012): Impact factor 8.278
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2