The anatomy of single cell mass cytometry data

Mass cytometry enables the measurement of up to 50 features on single cell. This has catalyzed a shift toward multidimensional data analysis methods, rather than the manual gating strategies as traditionally for in flow cytometry data. This shift means that data scientists are involved in the analysis process to an increasing degree. As the data is analyzed in a more unbiased fashion, where noisy or uninformative observations are not easily excluded, a deeper knowledge of the origin, noise, and modalities of the data is therefore needed to embark on useful data analysis. In this primer, we introduce the idiosyncrasies of mass cytometry data with a focus on the technical properties of how data generated with the CyTOF® system, and the characteristics of protein expression in the cells of the hematopoietic continuum, specifically targeted toward data scientists. We also provide a comprehensive online repository of scripts, tutorials, and example data.

General information
State: Accepted/In press
Organisations: Department of Bio and Health Informatics, Cancer Genomics, Department of Biotechnology and Biomedicine, Stanford University School of Medicine
Contributors: Olsen, L. R., Leipold, M. D., Pedersen, C. B., Maecker, H. T.
Number of pages: 18
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Cytometry. Part A
ISSN (Print): 1552-4922
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 2.64 SJR 1.557 SNIP 0.908
Web of Science (2017): Impact factor 3.26
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 2.48 SJR 1.423 SNIP 0.898
Web of Science (2016): Impact factor 3.222
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.32 SJR 1.652 SNIP 0.988
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 2.29 SJR 1.55 SNIP 1.005
Web of Science (2014): Impact factor 2.928
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 2.83 SJR 1.564 SNIP 1.19
Web of Science (2013): Impact factor 3.066
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 2.8 SJR 1.402 SNIP 1.204
Web of Science (2012): Impact factor 3.711
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): CiteScore 3.09 SJR 1.62 SNIP 1.151
Web of Science (2011): Impact factor 3.729
ISI indexed (2011): ISI indexed yes
Scopus rating (2010): SJR 1.383 SNIP 1.083
Web of Science (2010): Impact factor 3.753
Scopus rating (2009): SJR 1.074 SNIP 0.852
Web of Science (2009): Indexed yes
Scopus rating (2008): SJR 1.109 SNIP 1.001
Scopus rating (2007): SJR 1.207 SNIP 0.939
Scopus rating (2006): SJR 1.141 SNIP 0.992
Scopus rating (2005): SJR 0.95 SNIP 0.822
Scopus rating (2004): SJR 0.823 SNIP 0.62
Scopus rating (2003): SJR 0.11
Scopus rating (2002): SJR 0.11