Texture and Grain-size Effects on Cyclic Plasticity in Copper and Copper-Zinc - DTU Orbit (31/03/2019)

Texture and Grain-size Effects on Cyclic Plasticity in Copper and Copper-Zinc

A study of plastic strain controlled fatigue of copper and copper-zinc shows that polycrystalline Cu-30%Zn does not display true cyclic saturation and that texture has a major effect on the cyclic stress-strain (CSS) behaviour, whereas grain size has a minor effect. The self-consistent Sachs estimate of the CSS curve for polycrystalline Cu-30%Zn lies within 20% of the experimental curve for plastic strain amplitudes up to about 5×10^{-3}, as compared with 1×10^{-3} for copper. The increased range of validity of the Sachs model is correlated with slip planarity.

General information
State: Published
Organisations: Department of Solid Mechanics
Contributors: Carstensen, J. V., Pedersen, O.
Pages: 497-500
Publication date: 1997
Peer-reviewed: Yes

Publication information
Volume: A234-236
ISSN (Print): 0921-5093
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.76 SJR 1.694 SNIP 1.943
Web of Science (2017): Impact factor 3.414
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.39 SJR 1.669 SNIP 1.913
Web of Science (2016): Impact factor 3.094
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.01 SJR 1.742 SNIP 1.858
Web of Science (2015): Impact factor 2.647
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.32 SJR 2.235 SNIP 2.546
Web of Science (2014): Impact factor 2.567
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.86 SJR 1.868 SNIP 2.235
Web of Science (2013): Impact factor 2.409
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.5 SJR 1.744 SNIP 2.358
Web of Science (2012): Impact factor 2.108
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.59 SJR 1.74 SNIP 2.414
Web of Science (2011): Impact factor 2.003
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.723 SNIP 2.114