Testing and modeling dowel and catenary action in rebars crossing shear joints in RC -
DTU Orbit (09/01/2019)

Testing and modeling dowel and catenary action in rebars crossing shear joints in RC

This paper presents a detailed study of the shear behavior of two-sided dowel joints, which includes initiation of dowel action at small shear displacements and development of full catenary action in the reinforcement at large displacements. In addition to experimental results, the paper also presents a simple, second order plasticity model to describe the nonlinear regime of the load-displacement relationship. In the model, kinematic relations and the normality condition of plastic theory are utilized to establish a unique link between the imposed shear displacement and combinations of moment and tension that develop in the rebar(s) crossing the joint. Interface friction is included in a consistent manner based on clamping stresses induced by the tension of the rebar(s). Comparison of experimental results with the model predictions shows satisfactory agreement. The model has, due to its simplicity, potential for practical applications related to assessment of structural robustness, where estimation of the available energy (area below load-displacement curve) is important. (C) 2017 Elsevier Ltd. All rights reserved.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Structural Engineering
Contributors: Sørensen, J. H., Hoang, L. C., Olesen, J. F., Fischer, G.
Pages: 234-245
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Engineering Structures
Volume: 145
ISSN (Print): 0141-0296
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.32 SJR 1.69 SNIP 2.165
Web of Science (2017): Impact factor 2.755
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.93 SJR 1.547 SNIP 2.037
Web of Science (2016): Impact factor 2.258
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.59 SJR 1.631 SNIP 2.15
Web of Science (2015): Impact factor 1.893
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.4 SJR 1.701 SNIP 2.488
Web of Science (2014): Impact factor 1.838
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.69 SJR 1.967 SNIP 2.799
Web of Science (2013): Impact factor 1.767
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.23 SJR 1.786 SNIP 2.608
Web of Science (2012): Impact factor 1.713
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.26 SJR 1.644 SNIP 2.747
Original language: English

Keywords: Dowel action, Catenary action, Concrete plasticity, Second order modeling

DOI: 10.1016/j.engstruct.2017.05.020

Source: FindIt

Source-ID: 2358757796

Research output: Research - peer-review; Journal article – Annual report year: 2017