Ternary Vapor–Liquid Equilibrium Measurements and Modeling of Ethylene Glycol (1) + Water (2) + Methane (3) Systems at 6 and 12.5 MPa - DTU Orbit (17/10/2018)

Ternary Vapor–Liquid Equilibrium Measurements and Modeling of Ethylene Glycol (1) + Water (2) + Methane (3) Systems at 6 and 12.5 MPa

Novel technologies in the field of subsea gasprocessing include the development of natural gas dehydration facilities, which may operate at high pressure due to their proximity to reservoirs. For the qualification and design of these processing units, ternary vapor–liquid equilibrium data are required to validate the thermodynamic models used in the design process. For this purpose, 16 new ternary data points were measured for ethylene glycol (1) + water (2) + methane (3) at 6.0 and 12.5 MPa with temperatures ranging from 288 to 323 K and glycol content above 90 wt %. Glycol in gas (y_1), water in gas (y_2), and methane solubility (x_3) were measured with relative experimental uncertainties ($u_r(x) = u(x)/|x|$) below 12%, depending on the type of data. The Cubic-Plus-Association (CPA) equation of state was used to model the data. Literature pure component and binary interaction parameters were used. It was found that the model provides a good qualitative description of the experimental data for y_1 and y_2, while a significant over-prediction occurs for x_3. The modeling errors for CPA ranged between 5–40% average absolute relative deviation.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CERE – Center for Energy Resources, Engineering, KT Consortium, Statoil ASA
Contributors: Kruger, F. J., Danielsen, M. V., Kontogeorgis, G. M., Solbraa, E., von Solms, N.
Number of pages: 8
Pages: 1789-1796
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Chemical and Engineering Data
Volume: 63
Issue number: 5
ISSN (Print): 0021-9568
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.33 SJR 0.925 SNIP 1.116
Web of Science (2017): Impact factor 2.196
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.29 SJR 0.866 SNIP 1.103
Web of Science (2016): Impact factor 2.323
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.96 SJR 0.857 SNIP 0.954
Web of Science (2015): Impact factor 1.835
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.22 SJR 1.015 SNIP 1.196
Web of Science (2014): Impact factor 2.037
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.17 SJR 1.131 SNIP 1.196
Web of Science (2013): Impact factor 2.045
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.01 SJR 1.139 SNIP 1.102
Web of Science (2012): Impact factor 2.004
ISI indexed (2012): ISI indexed yes