We demonstrate wafer-scale, non-contact mapping of essential carrier transport parameters, carrier mobility (μ_{drift}), carrier density (N_S), DC sheet conductance (σ_{dc}), and carrier scattering time (τ_{SC}) in CVD graphene, using spatially resolved terahertz time-domain conductance spectroscopy. σ_{dc} and τ_{SC} are directly extracted from Drude model fits to terahertz conductance spectra obtained in each pixel of 10 x 10 cm2 maps with a 400 μm step size. σ_{dc}- and τ_{SC}-maps are translated into μ_{drift} and N_S-maps through Boltzmann transport theory for graphene charge carriers and these parameters are directly compared to van der Pauw device measurements on the same wafer. The technique is compatible with all substrate materials that exhibit a reasonably low absorption coefficient for terahertz radiation. This includes many materials used for transferring CVD graphene in production facilities as well as in envisioned products, such as polymer films, glass substrates, cloth, or paper substrates. (c) 2015 Optical Society of America