Ten questions about radiant heating and cooling systems

Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used to handle latent load, the radiant cooling system has proven applicable in hot and humid climates. It is well known that the RHC system has advantages of low draught risk, quiet operation, low energy consumption, and ability for design integration with building elements. These merits have motivated numerous studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating and cooling. On the other hand, the RHC system has limitations such as complicated control of Thermally Activated Building System (TABS), acoustical issues, higher capital cost and cooling load than conventional air systems, and so on. For now, the required mitigation of these limitations and the need to extend the applicability of the RHC system are providing the continuous impetus for research on RHC systems. This paper summarizes the important issues involved in the research on RHC system, whereby ten questions and answers concerning the RHC system are discussed, which will help researchers to conduct relevant studies.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Pukyong National University, Seoul National University
Contributors: Rhee, K., Olesen, B. W., Kim, K. W.
Number of pages: 15
Pages: 367-381
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Building and Environment
Volume: 112
ISSN (Print): 0360-1323
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.22 SJR 2.169 SNIP 2.534
Web of Science (2017): Impact factor 4.539
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.51 SJR 1.998 SNIP 2.215
Web of Science (2016): Impact factor 4.053
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.37 SJR 2.067 SNIP 2.463
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.14 SJR 1.887 SNIP 2.742
Web of Science (2014): Impact factor 3.341
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.57 SJR 1.547 SNIP 2.551
Web of Science (2013): Impact factor 2.7
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.06 SJR 1.293 SNIP 2.857
Web of Science (2012): Impact factor 2.43
ISI indexed (2012): ISI indexed yes
Original language: English
Keywords: Radiant heating and cooling system, Thermal comfort, Heat transfer, Energy simulation, Control

Electronic versions:
filestore_2_.pdf

DOIs:
10.1016/j.buildenv.2016.11.030

Source: FindIt
Source-ID: 2349019017
Research output: Research - peer-review › Journal article – Annual report year: 2017