Temporal reflectance changes in vegetables - DTU Orbit (24/12/2018)

Temporal reflectance changes in vegetables

Quality control in the food industry is often performed by measuring various chemical compounds of the food involved. We propose an imaging concept for acquiring high quality multispectral images to evaluate changes of carrots and celeriac over a period of 14 days. Properties originating in the surface chemistry of vegetables may be captured in an integrating sphere illumination which enables the creation of detailed surface chemistry maps with a good combination of spectral and spatial resolutions. Prior to multispectral image recording, the vegetables were prefried and frozen at -30°C for four months. During the 14 days of image recording, the vegetables were kept at +5°C in refrigeration. In this period, surface changes and thereby reflectance properties were very subtle. To describe this small variation we employed advanced statistical techniques to search a large featurespace of variables extracted from the chemistry maps. The resulting components showed a change in both the carrot and celeriac samples. We were able to deduct from the resulting components that oxidation caused the changes over time.

General information

State: Published
Organisations: Image Analysis and Computer Graphics, Department of Informatics and Mathematical Modeling, Division of Food Production Engineering, National Food Institute
Contributors: Dissing, B. S., Clemmensen, L. K. H., Ersbøll, B. K., Løje, H., Adler-Nissen, J.
Pages: 1917-1922
Publication date: 2009

Host publication information

Title of host publication: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops)
Publisher: IEEE
ISBN (Print): 978-1-4244-4442-7
Electronic versions:
Dissing.pdf
DOIs:
10.1109/ICCVW.2009.5457516

Bibliographical note

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Source: orbit
Source-ID: 250334
Research output: Research › Article in proceedings – Annual report year: 2009