Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry - DTU Orbit (15/12/2018)

Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry

Fiber-coupled organic plastic scintillators have potential applications in medical dosimetry related to, for example, brachytherapy and external beam radiotherapy with MV photons. As medical dosimetry generally strives for high accuracy, we designed a study to assess if the light yield from commonly used scintillating fibers would change with temperature in the clinical range (15–40 °C). The study showed that the light yield in the peak regions of the scintillators studied decreases linearly with increasing temperature. For the blue BCF-12 and the green BCF-60 from Saint-Gobain, France we found temperature coefficients of −0.15 ± 0.01%/K and −0.55 ± 0.04%/K, respectively. These values are sufficiently large to warrant careful consideration for clinical measurements. © 2013 Elsevier Ltd. All rights reserved.

General information
State: Published
Organisations: Center for Nuclear Technologies, Radiation Physics
Contributors: Buranurak, S., Andersen, C. E., Beierholm, A. R., Lindvold, L. R.
Pages: 307-311
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Radiation Measurements
Volume: 56
ISSN (Print): 1350-4487
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.33 SJR 0.509 SNIP 1.035
Web of Science (2017): Impact factor 1.369
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.15 SJR 0.536 SNIP 1.007
Web of Science (2016): Impact factor 1.442
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.26 SJR 0.639 SNIP 1.147
Web of Science (2015): Impact factor 1.071
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.38 SJR 0.642 SNIP 1.242
Web of Science (2014): Impact factor 1.213
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.21 SJR 0.612 SNIP 1.063
Web of Science (2013): Impact factor 1.14
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.03 SJR 0.586 SNIP 0.841
Web of Science (2012): Impact factor 0.861
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.19 SJR 0.651 SNIP 1.176
Web of Science (2011): Impact factor 1.177
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes