A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering the constraints of available refrigeration equipment and a requirement of a positive net present value of the investment. Six heat pump systems were considered, corresponding to an upper limit of the sink temperature of 120 °C. For each set of heat sink and source temperatures the best available technology was determined. The results showed that four different heat pump systems propose the best available technology at different parts of the complete domain. Ammonia systems presented the best available technology at low sink outlet temperature. At high temperature difference between sink in- and outlet, the transcritical R744 expands the working domain for low sink outlet temperatures.
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.355 SNIP 1.789
Web of Science (2010): Impact factor 1.439
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.565 SNIP 1.972
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.282 SNIP 1.734
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.848 SNIP 1.629
Scopus rating (2006): SJR 1.497 SNIP 1.643
Scopus rating (2005): SJR 1.384 SNIP 1.682
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.174 SNIP 1.916
Scopus rating (2003): SJR 1.222 SNIP 1.507
Scopus rating (2002): SJR 1.642 SNIP 1.809
Scopus rating (2001): SJR 1.9 SNIP 1.869
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.816 SNIP 1.314
Scopus rating (1999): SJR 0.809 SNIP 1.214
Original language: English
Keywords: Industrial heat pumps, Working domain, Absorption-compression heat pump, Economic evaluation, Natural refrigerants
Electronic versions:
Technical_and_economic_working_domains_of_industrial_heat_pumps_Part_1_orbit.pdf. Embargo ended: 05/03/2017
Technical_and_economic_working_domains_part_1_postprint.pdf
DOIs:
10.1016/j.ijrefrig.2015.02.012
Research output: Research - peer-review › Journal article – Annual report year: 2015