Teaching Power Electronics with a Design-Oriented and Project-Based Learning Method at the Technical University of Denmark

Power electronics is a fast developing technology within the electrical engineering field. This paper presents the results and experiences gained from Design-Oriented Project Based Learning of switch-mode power supply design within a power electronics course at the Technical University of Denmark (DTU). Project-based learning (PBL) is known to be a motivating and problem-centered teaching method that not only places students at the core of the teaching and learning activities but also gives students the ability to transfer their acquired scientific knowledge into industrial practices. Students are asked to choose a specification from different power converter applications such as a fuel cell power conditioning converter, a light-emitting diode (LED) driver or a battery charger. Based upon their choice, the students select topology, design magnetic components, calculate input/output filters and design closed-loop controllers in order to fulfill the requirements listed in the chosen specification; thereby meeting the corresponding project’s goals. In this paper, the course teaching plan and teaching methods are introduced, the assessment method is analysed and feedback from the students is studied.

General information
State: Published
Organisations: Department of Electrical Engineering, Electronics, Office for Study Programmes and Student Affairs, Department of Mechanical Engineering, Engineering Design and Product Development
Contributors: Zhang, Z., Hansen, C. T., Andersen, M. A. E.
Number of pages: 7
Pages: 32-38
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Education
Volume: 59
Issue number: 1
ISSN (Print): 0018-9359
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.25 SJR 0.486 SNIP 2.009
Web of Science (2017): Impact factor 1.6
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.73 SJR 0.891 SNIP 2.397
Web of Science (2016): Impact factor 1.727
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.59 SJR 0.838 SNIP 2.641
Web of Science (2015): Impact factor 1.33
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.91 SJR 0.963 SNIP 1.641
Web of Science (2014): Impact factor 0.842
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.19 SJR 0.898 SNIP 1.895
Web of Science (2013): Impact factor 1.221
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.19 SJR 0.847 SNIP 2.166
Web of Science (2012): Impact factor 0.95
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.1 SJR 0.864 SNIP 2.187
Web of Science (2011): Impact factor 1.021
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.753 SNIP 1.982
Web of Science (2010): Impact factor 1.165
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.745 SNIP 2.107
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.879 SNIP 2.38
Scopus rating (2007): SJR 0.598 SNIP 1.482
Scopus rating (2006): SJR 0.485 SNIP 1.548
Scopus rating (2005): SJR 0.545 SNIP 2.156
Scopus rating (2004): SJR 1.079 SNIP 2.096
Scopus rating (2003): SJR 1.054 SNIP 1.35
Scopus rating (2002): SJR 1.158 SNIP 1.207
Scopus rating (2001): SJR 1.257 SNIP 0.977
Scopus rating (2000): SJR 0.963 SNIP 1.036
Scopus rating (1999): SJR 0.941 SNIP 0.715
Original language: English
Keywords: Project-based learning, Group work, Power electronics, DC-DC converters
Electronic versions:
Teaching_Power_Electronics_revised_R3_v2_DTU_orbit.pdf
DOIs:
10.1109/TE.2015.2426674

Bibliographical note
(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Source: PublicationPreSubmission
Source-ID: 107774014
Research output: Research - peer-review → Journal article – Annual report year: 2015